scholarly journals Remarks concerning the 2-Hilbert class field of imaginary quadratic number fields

1993 ◽  
Vol 48 (3) ◽  
pp. 379-383 ◽  
Author(s):  
Elliot Benjamin

Letkbe an imaginary quadratic number field and letk1be the 2-Hilbert class field ofk. IfCk,2, the 2-Sylow subgroup of the ideal class group ofk, is elementary and |Ck,2|≥ 8, we show thatCk1,2is not cyclic. IfCk,2is isomorphic toZ/2Z×Z/4ZandCk1,2is elementary we show thatkhas finite 2-class field tower of length at most 2.

1998 ◽  
Vol 40 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Frank Gerth

Let K be a quadratic number field with 2-class group of type (2,2). Thus if Sk is the Sylow 2-subgroup of the ideal class group of K, then Sk = ℤ/2ℤ × ℤ/2ℤ LetK ⊂ K1 ⊂ K2 ⊂ K3 ⊂…the 2-class field tower of K. Thus K1 is the maximal abelian unramified extension of K of degree a power of 2; K2 is the maximal abelian unramified extension of K of degree a power of 2; etc. By class field theory the Galois group Ga1 (K1/K) ≅ Sk ≅ ℤ/2ℤ × ℤ/2ℤ, and in this case it is known that Ga(K2/Kl) is a cyclic group (cf. [3] and [10]). Then by class field theory the class number of K2 is odd, and hence K2 = K3 = K4 = …. We say that the 2-class field tower of K terminates at K1 if the class number of K1 is odd (and hence K1 = K2 = K3 = … ); otherwise we say that the 2-class field tower of K terminates at K2. Our goal in this paper is to determine how likely it is for the 2-class field tower of K to terminate at K1 and how likely it is for the 2-class field tower of K to terminate at K2. We shall consider separately the imaginary quadratic fields and the real quadratic fields.


1994 ◽  
Vol 46 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Jurgen Hurrelbrink

AbstractThis is about results on certain regular graphs that yield information about the structure of the ideal class group of quadratic number fields associated with these graphs. Some of the results can be formulated in terms of the quadratic forms x2 + 27y2, x2 + 32y2, x2 + 64y2.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelmalek Azizi ◽  
Mohamed Talbi ◽  
Mohammed Talbi

We determine the Hilbert 2-class field tower for some quartic number fields k whose 2-class group Ck,2 is isomorphic to ℤ/2ℤ×ℤ/2ℤ.


2018 ◽  
Vol 237 ◽  
pp. 166-187
Author(s):  
SOSUKE SASAKI

Let $k$ be an imaginary quadratic field with $\operatorname{Cl}_{2}(k)\simeq V_{4}$. It is known that the length of the Hilbert $2$-class field tower is at least $2$. Gerth (On 2-class field towers for quadratic number fields with$2$-class group of type$(2,2)$, Glasgow Math. J. 40(1) (1998), 63–69) calculated the density of $k$ where the length of the tower is $1$; that is, the maximal unramified $2$-extension is a $V_{4}$-extension. In this paper, we shall extend this result for generalized quaternion, dihedral, and semidihedral extensions of small degrees.


1994 ◽  
Vol 50 (2) ◽  
pp. 351-352
Author(s):  
Elliot Benjamin

In my earlier paper [1] I made the claim that there are three groups in Hall and Senior's book “The Groups of Order 2n(n ≤ 6)” that are in error (groups 64/140, 64/141, 64/143). However, it has been pointed out to me by Franz Lemermeyer that I made the unfortunate oversight of using the definition [x, y] = xyx−1y−1 for the commutator whereas Hall and Senion use the definition [x, y] = x−1y−1xy (see [2]). With this correction there is no problem with the above three groups in Hall and Senior.


1995 ◽  
Vol 38 (3) ◽  
pp. 330-333
Author(s):  
Robert J. Kingan

AbstractResults are given for a class of square {0,1}-matrices which provide information about the 4-rank of the ideal class group of certain quadratic number fields.


Sign in / Sign up

Export Citation Format

Share Document