scholarly journals A metrisation theorem for pseudocompact spaces

2001 ◽  
Vol 63 (1) ◽  
pp. 101-104
Author(s):  
Chris Good ◽  
A. M. Mohamad

In this paper we prove that a completely regular pseudocompact space with a quasi-regular-Gδ-diagonal is metrisable.

2014 ◽  
Vol 12 (3) ◽  
Author(s):  
Ofelia Alas ◽  
Vladimir Tkachuk ◽  
Richard Wilson

AbstractWe study maximal pseudocompact spaces calling them also MP-spaces. We show that the product of a maximal pseudocompact space and a countable compact space is maximal pseudocompact. If X is hereditarily maximal pseudocompact then X × Y is hereditarily maximal pseudocompact for any first countable compact space Y. It turns out that hereditary maximal pseudocompactness coincides with the Preiss-Simon property in countably compact spaces. In compact spaces, hereditary MP-property is invariant under continuous images while this is not true for the class of countably compact spaces. We prove that every Fréchet-Urysohn compact space is homeomorphic to a retract of a compact MP-space. We also give a ZFC example of a Fréchet-Urysohn compact space which is not maximal pseudocompact. Therefore maximal pseudocompactness is not preserved by continuous images in the class of compact spaces.


1981 ◽  
Vol 4 (2) ◽  
pp. 407-409
Author(s):  
Prabduh Ram Misra ◽  
Vinodkumar

It is proved here that a completely regular Hausdorff space X is pseudocompact if and only if for any continuous function f from X to a pseudocompact space (or a compact space) Y, f*ϕ is z-ultrafilter whenever ϕ is a z-ultrafilter on X.


Author(s):  
P. R. Jones

AbstractSeveral morphisms of this lattice V(CR) are found, leading to decompostions of it, and various sublattices, into subdirect products of interval sublattices. For example the map V → V ∪ G (where G is the variety of groups) is shown to be a retraction of V(CR); from modularity of the lattice V(BG) of varieties of bands of groups it follows that the map V → (V ∪ V V G) is an isomorphism of V(BG).


2020 ◽  
pp. 1-17
Author(s):  
MARCY BARGE ◽  
JOHANNES KELLENDONK

Abstract It is shown that the Ellis semigroup of a $\mathbb Z$ -action on a compact totally disconnected space is completely regular if and only if forward proximality coincides with forward asymptoticity and backward proximality coincides with backward asymptoticity. Furthermore, the Ellis semigroup of a $\mathbb Z$ - or $\mathbb R$ -action for which forward proximality and backward proximality are transitive relations is shown to have at most two left minimal ideals. Finally, the notion of near simplicity of the Ellis semigroup is introduced and related to the above.


1977 ◽  
Vol 23 (1) ◽  
pp. 46-58 ◽  
Author(s):  
A. R. Bednarek ◽  
Eugene M. Norris

SynopsisIn this paper we define two semigroups of continuous relations on topological spaces and determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes all 0-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which contain an arc; indeed all of K. D. Magill's S*-spaces are included. Some of the algebraic structure of the semigroup of all continuous relations is elucidated and a method for producing examples of topological semigroups of relations is discussed.


1984 ◽  
Vol 29 (1) ◽  
pp. 365-374 ◽  
Author(s):  
Matthew Gould ◽  
Joseph A. Iskra ◽  
Constantine Tsinakis
Keyword(s):  

1998 ◽  
Vol 43 (5) ◽  
pp. 379-381
Author(s):  
Xueming Ren ◽  
Yuqi Guo ◽  
Jiaping Cen

1975 ◽  
Vol 7 (1) ◽  
pp. 83-122 ◽  
Author(s):  
Odile Macchi

The structure of the probability space associated with a general point process, when regarded as a counting process, is reviewed using the coincidence formalism. The rest of the paper is devoted to the class of regular point processes for which all coincidence probabilities admit densities. It is shown that their distribution is completely specified by the system of coincidence densities. The specification formalism is stressed for ‘completely’ regular point processes. A construction theorem gives a characterization of the system of coincidence densities of such a process. It permits the study of most models of point processes. New results on the photon process, a particular type of conditioned Poisson process, are derived. New examples are exhibited, including the Gauss-Poisson process and the ‘fermion’ process that is suitable whenever the points are repulsive.


Sign in / Sign up

Export Citation Format

Share Document