scholarly journals Hopfian and co-Hopfian groups

1997 ◽  
Vol 56 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Satya Deo ◽  
K. Varadarajan

The main results proved in this note are the following:(i) Any finitely generated group can be expressed as a quotient of a finitely presented, centreless group which is simultaneously Hopfian and co-Hopfian.(ii) There is no functorial imbedding of groups (respectively finitely generated groups) into Hopfian groups.(iii) We prove a result which implies in particular that if the double orientable cover N of a closed non-orientable aspherical manifold M has a co-Hopfian fundamental group then π1(M) itself is co-Hopfian.

1992 ◽  
Vol 45 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Ron Hirshon ◽  
David Meier

We prove that given a finitely generated group G with a homomorphism of G onto G × H, H non-trivial, or a finitely generated group G with a homomorphism of G onto G × G, we can always find normal subgroups N ≠ G such that G/N ≅ G/N × H or G/N ≅ G/N × G/N respectively. We also show that given a finitely presented non-Hopfian group U and a homomorphism φ of U onto U, which is not an isomorphism, we can always find a finitely presented group H ⊇ U and a finitely generated free group F such that φ induces a homomorphism of U * F onto (U * F) × H. Together with the results above this allows the construction of many examples of finitely generated groups G with G ≅ G × H where H is finitely presented. A finitely presented group G with a homomorphism of G onto G × G was first constructed by Baumslag and Miller. We use a slight generalisation of their method to obtain more examples of such groups.


2007 ◽  
Vol 49 (1) ◽  
pp. 23-28
Author(s):  
JON CORSON ◽  
DOHYOUNG RYANG

Abstract.A finitely generated group acting properly, cocompactly, and by isometries on an Lδ-metric space is finitely presented and has a sub-cubic isoperimetric function.


2020 ◽  
pp. 1-7
Author(s):  
Anton A. Klyachko

Abstract According to Mazhuga’s theorem, the fundamental group H of anyconnected surface, possibly except for the Klein bottle, is a retract of each finitely generated group containing H as a verbally closed subgroup. We prove that the Klein bottle group is indeed an exception but has a very close property.


Author(s):  
Martin R. Bridson

Based on a lecture at PCMI this chapter is structured around two sets of results, one concerning groups of automorphisms of surfaces and the other concerning the nilpotent genus of groups. The first set of results exemplifies the theme that even the nicest of groups can harbour a diverse array of complicated finitely presented subgroups: we shall see that the finitely presented subgroups of the mapping class groups of surfaces of finite type can be much wilder than had been previously recognised. The second set of results fits into the quest to understand which properties of a finitely generated group can be detected by examining the group’s finite and nilpotent quotients and which cannot.


2015 ◽  
Vol 26 (01) ◽  
pp. 1550010 ◽  
Author(s):  
Anar Akhmedov ◽  
Kadriye Nur Saglam

In [Small exotic 4-manifolds, Algebr. Geom. Topol.8 (2008) 1781–1794], the first author constructed the first known example of exotic minimal symplectic[Formula: see text] and minimal symplectic 4-manifold that is homeomorphic but not diffeomorphic to [Formula: see text]. The construction in [Small exotic 4-manifolds, Algebr. Geom. Topol.8 (2008) 1781–1794] uses Yukio Matsumoto's genus two Lefschetz fibrations on [Formula: see text] over 𝕊2 along with the fake symplectic 𝕊2 × 𝕊2 construction given in [Construction of symplectic cohomology 𝕊2 × 𝕊2, Proc. Gökova Geom. Topol. Conf.14 (2007) 36–48]. The main goal in this paper is to generalize the construction in [Small exotic 4-manifolds, Algebr. Geom. Topol.8 (2008) 1781–1794] using the higher genus versions of Matsumoto's fibration constructed by Mustafa Korkmaz and Yusuf Gurtas on [Formula: see text] for any k ≥ 2 and n = 1, and k ≥ 1 and n ≥ 2, respectively. Using our symplectic building blocks, we also construct new symplectic 4-manifolds with the free group of rank s ≥ 1, the free product of the finite cyclic groups, and various other finitely generated groups as the fundamental group.


Author(s):  
Stefan Friedl ◽  
Stefano Vidussi

Abstract Let G be a finitely generated group that can be written as an extension $$ \begin{align*} 1 \longrightarrow K \stackrel{i}{\longrightarrow} G \stackrel{f}{\longrightarrow} \Gamma \longrightarrow 1 \end{align*} $$ where K is a finitely generated group. By a study of the Bieri–Neumann–Strebel (BNS) invariants we prove that if $b_1(G)> b_1(\Gamma ) > 0$ , then G algebraically fibres; that is, admits an epimorphism to $\Bbb {Z}$ with finitely generated kernel. An interesting case of this occurrence is when G is the fundamental group of a surface bundle over a surface $F \hookrightarrow X \rightarrow B$ with Albanese dimension $a(X) = 2$ . As an application, we show that if X has virtual Albanese dimension $va(X) = 2$ and base and fibre have genus greater that $1$ , G is noncoherent. This answers for a broad class of bundles a question of J. Hillman ([9, Question 11(4)]). Finally, we show that there exist surface bundles over a surface whose BNS invariants have a structure that differs from that of Kodaira fibrations, determined by T. Delzant.


1998 ◽  
Vol 08 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Susan Garner Garille ◽  
John Meier

Let G be a finitely generated group. The Bieri–Neumann–Strebel invariant Σ1(G) of G determines, among other things, the distribution of finitely generated subgroups N◃G with G/N abelian. This invariant can be quite difficult to compute. Given a finite presentation 〈S:R〉 for G, there is an algorithm, introduced by Brown and extended by Bieri and Strebel, which determines a space Σ(R) that is always contained in, and is sometimes equal to, Σ1(G). We refine this algorithm to one which involves the local structure of the universal cover of the standard 2-complex of a given presentation. Let Ψ(R) denote the space determined by this algorithm. We show that Σ(R) ⊆ Ψ ⊆ Σ1(G) for any finitely presented group G, and if G admits a staggered presentation, then Ψ = Σ1(G). By casting this algorithm in terms of connectivity properties of graphs, it is shown to be computationally feasible.


1972 ◽  
Vol 37 (3) ◽  
pp. 512-520 ◽  
Author(s):  
Angus Macintyre

The central result of this paper was proved in order to settle a problem arising from B. H. Neumann's paper [10].In [10] Neumann proved that if a finitely generated group H is recursively absolutely presentable then H is embeddable in all nontrivial algebraically-closed groups. Harry Simmons [14] clarified this by showing that a finitely generated group H is recursively absolutely presentable if and only if H can be recursively presented with solvable word-problem. Therefore, if a finitely generated group H can be recursively presented with solvable word-problem then H is embeddable in all nontrivial algebraically-closed groups.The problem arises of characterizing those finitely generated groups which are embeddable in all nontrivial algebraically-closed groups. In this paper we prove, by a forcing argument, that if a finitely generated group H is embeddable in all non-trivial algebraically-closed groups then H can be recursively presented with solvable word-problem. Thus Neumann's result is sharp.Our results are obtained by the method of forcing in model-theory, as developed in [1], [12]. Our method of proof has nothing to do with group-theory. We prove general results, Theorems 1 and 2 below, about constructing generic structures without certain isomorphism-types of finitely generated substructures. The formulation of these results requires the notion of Turing degree. As an application of the central result we prove Theorem 3 which gives information about the number of countable K-generic structures.We gratefully acknowledge many helpful conversations with Harry Simmons.


2018 ◽  
Vol 21 (3) ◽  
pp. 511-530
Author(s):  
Jonathan A. Hillman

Abstract We show that if π is the fundamental group of a 4-dimensional infrasolvmanifold then {-2\leq\mathrm{def}(\pi)\leq 0} , and give examples realizing each value allowed by our constraints, for each possible value of the rank of {\pi/\pi^{\prime}} . We also consider the abstract commensurators of such groups. Finally, we show that if G is a finitely generated group, the kernel of the natural homomorphism from G to its abstract commensurator {\mathrm{Comm}(G)} is locally nilpotent by locally finite, and is finite if {\mathrm{def}(G)>1} .


Sign in / Sign up

Export Citation Format

Share Document