klein bottle
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 30)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 1-18
Author(s):  
Natalia Cadavid-Aguilar ◽  
Jesús González ◽  
Bárbara Gutiérrez ◽  
Cesar A. Ipanaque-Zapata

We introduce the effectual topological complexity (ETC) of a [Formula: see text]-space [Formula: see text]. This is a [Formula: see text]-equivariant homotopy invariant sitting in between the effective topological complexity of the pair [Formula: see text] and the (regular) topological complexity of the orbit space [Formula: see text]. We study ETC for spheres and surfaces with antipodal involution, obtaining a full computation in the case of the torus. This allows us to prove the vanishing of twice the nontrivial obstruction responsible for the fact that the topological complexity of the Klein bottle is [Formula: see text]. In addition, this gives a counterexample to the possibility — suggested in Pavešić’s work on the topological complexity of a map — that ETC of [Formula: see text] would agree with Farber’s [Formula: see text] whenever the projection map [Formula: see text] is finitely sheeted. We conjecture that ETC of spheres with antipodal action recasts the Hopf invariant one problem, and describe (conjecturally optimal) effectual motion planners.


2021 ◽  
Vol 344 (11) ◽  
pp. 112528
Author(s):  
Evgeniy Krasko ◽  
Alexander Omelchenko

Author(s):  
Sooran Kang ◽  
David Pask ◽  
Samuel B.G. Webster

Abstract We compute a presentation of the fundamental group of a higher-rank graph using a coloured graph description of higher-rank graphs developed by the third author. We compute the fundamental groups of several examples from the literature. Our results fit naturally into the suite of known geometrical results about higher-rank graphs when we show that the abelianization of the fundamental group is the homology group. We end with a calculation which gives a non-standard presentation of the fundamental group of the Klein bottle to the one normally found in the literature.


2021 ◽  
Vol 118 (29) ◽  
pp. e2100473118
Author(s):  
Duluxan Sritharan ◽  
Shu Wang ◽  
Sahand Hormoz

Most high-dimensional datasets are thought to be inherently low-dimensional—that is, data points are constrained to lie on a low-dimensional manifold embedded in a high-dimensional ambient space. Here, we study the viability of two approaches from differential geometry to estimate the Riemannian curvature of these low-dimensional manifolds. The intrinsic approach relates curvature to the Laplace–Beltrami operator using the heat-trace expansion and is agnostic to how a manifold is embedded in a high-dimensional space. The extrinsic approach relates the ambient coordinates of a manifold’s embedding to its curvature using the Second Fundamental Form and the Gauss–Codazzi equation. We found that the intrinsic approach fails to accurately estimate the curvature of even a two-dimensional constant-curvature manifold, whereas the extrinsic approach was able to handle more complex toy models, even when confounded by practical constraints like small sample sizes and measurement noise. To test the applicability of the extrinsic approach to real-world data, we computed the curvature of a well-studied manifold of image patches and recapitulated its topological classification as a Klein bottle. Lastly, we applied the extrinsic approach to study single-cell transcriptomic sequencing (scRNAseq) datasets of blood, gastrulation, and brain cells to quantify the Riemannian curvature of scRNAseq manifolds.


2021 ◽  
Vol 4 ◽  
Author(s):  
Henry Adams ◽  
Michael Moy

Through the use of examples, we explain one way in which applied topology has evolved since the birth of persistent homology in the early 2000s. The first applications of topology to data emphasized the global shape of a dataset, such as the three-circle model for 3 × 3 pixel patches from natural images, or the configuration space of the cyclo-octane molecule, which is a sphere with a Klein bottle attached via two circles of singularity. In these studies of global shape, short persistent homology bars are disregarded as sampling noise. More recently, however, persistent homology has been used to address questions about the local geometry of data. For instance, how can local geometry be vectorized for use in machine learning problems? Persistent homology and its vectorization methods, including persistence landscapes and persistence images, provide popular techniques for incorporating both local geometry and global topology into machine learning. Our meta-hypothesis is that the short bars are as important as the long bars for many machine learning tasks. In defense of this claim, we survey applications of persistent homology to shape recognition, agent-based modeling, materials science, archaeology, and biology. Additionally, we survey work connecting persistent homology to geometric features of spaces, including curvature and fractal dimension, and various methods that have been used to incorporate persistent homology into machine learning.


2021 ◽  
pp. 107562
Author(s):  
Cristhian E. Hidber ◽  
Daniel Juan-Pineda
Keyword(s):  

2021 ◽  
pp. 261-272
Author(s):  
Ricardo Velezmoro-León ◽  
Nestor Javier Farias-Morcillo ◽  
Robert Ipanaqué-Chero ◽  
José Manuel Estela-Vilela ◽  
Judith Keren Jiménez-Vilcherrez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document