Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras
1999 ◽
Vol 59
(2)
◽
pp. 187-201
Keyword(s):
In this article we define symmetric geodesies on conformal compactifications of Euclidean Jordan algebras and classify symmetric geodesics for the Euclidean Jordan algebra of all n × n symmetric real matrices. Furthermore, we show that the closed geodesics for the Euclidean Jordan algebra of all 2 × 2 symmetric real matrices are realised as the torus knots in the Shilov boundary of a Lie ball.
2013 ◽
Vol 15
(04)
◽
pp. 1340034
◽
2012 ◽
Vol 29
(02)
◽
pp. 1250015
◽
2009 ◽
Vol 430
(8-9)
◽
pp. 1992-2011
◽
2011 ◽
Vol 59
(1)
◽
pp. 65-86
◽
1992 ◽
Vol 07
(15)
◽
pp. 3623-3637
◽
Keyword(s):
2019 ◽
Vol 72
(1)
◽
pp. 183-201
◽