hermitian matrices
Recently Published Documents


TOTAL DOCUMENTS

575
(FIVE YEARS 55)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
pp. 49-62
Author(s):  
Jonathan Caalim ◽  
Yu-ichi Tanaka

Let $M_n(\mathbb{C})$ be the set of $n\times n$ matrices over the complex numbers. Let $S \in M_n(\mathbb{C})$. A matrix $A\in M_n(\mathbb{C})$ is said to be $S$-skew-Hermitian if $SA^*=-AS$ where $A^*$ is the conjugate transpose of $A$. The set $\mathfrak{u}_S$ of all $S$-skew-Hermitian matrices is a Lie algebra. In this paper, we give a real dimension formula for $\mathfrak{u}_S$ using the Jordan block decomposition of the cosquare $S(S^*)^{-1}$ of $S$ when $S$ is nonsingular.


CALCOLO ◽  
2021 ◽  
Vol 58 (4) ◽  
Author(s):  
Taoran Fu ◽  
Bo Jiang ◽  
Zhening Li

AbstractHermitian matrices have played an important role in matrix theory and complex quadratic optimization. The high-order generalization of Hermitian matrices, conjugate partial-symmetric (CPS) tensors, have shown growing interest recently in tensor theory and computation, particularly in application-driven complex polynomial optimization problems. In this paper, we study CPS tensors with a focus on ranks, computing rank-one decompositions and approximations, as well as their applications. We prove constructively that any CPS tensor can be decomposed into a sum of rank-one CPS tensors, which provides an explicit method to compute such rank-one decompositions. Three types of ranks for CPS tensors are defined and shown to be different in general. This leads to the invalidity of the conjugate version of Comon’s conjecture. We then study rank-one approximations and matricizations of CPS tensors. By carefully unfolding CPS tensors to Hermitian matrices, rank-one equivalence can be preserved. This enables us to develop new convex optimization models and algorithms to compute best rank-one approximations of CPS tensors. Numerical experiments from data sets in radar wave form design, elasticity tensor, and quantum entanglement are performed to justify the capability of our methods.


2021 ◽  
Vol 13 (4) ◽  
pp. 77
Author(s):  
Meili Liu ◽  
Liwei Wang ◽  
Chun-Te Lee ◽  
Jeng-Eng Lin

Inspired by the results that functions preserve orthogonality of full matrices, upper triangular matrices, and symmetric matrices. We finish the work by finding special orthogonal matrices which satisfy the conditions of preserving orthogonality functions. We give a characterization of functions preserving orthogonality of Hermitian matrices.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Guillermo González ◽  
Rahul Trivedi ◽  
J. Ignacio Cirac

2021 ◽  
pp. 1-21
Author(s):  
JOHN DUNCAN ◽  
COLIN M. McGREGOR

Abstract. We continue our investigation of the real space H of Hermitian matrices in $${M_n}(\mathbb{C})$$ with respect to norms on $${\mathbb{C}^n}$$ . We complete the commutative case by showing that any proper real subspace of the real diagonal matrices on $${\mathbb{C}^n}$$ can appear as H. For the non-commutative case, we give a complete solution when n=3 and we provide various illustrative examples for n ≥ 4. We end with a short list of problems.


Sign in / Sign up

Export Citation Format

Share Document