euclidean jordan algebra
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
D. V. ALEKSEEVSKY ◽  
V. CORTÉS

AbstractThe paper is devoted to the generalization of the Vinberg theory of homogeneous convex cones. Such a cone is described as the set of “positive definite matrices” in the Vinberg commutative algebra ℋn of Hermitian T-matrices. These algebras are a generalization of Euclidean Jordan algebras and consist of n × n matrices A = (aij), where aii ∈ ℝ, the entry aij for i < j belongs to some Euclidean vector space (Vij ; 𝔤) and $$ {a}_{ji}={a}_{ij}^{\ast }=\mathfrak{g}\left({a}_{ij},\cdot \right)\in {V}_{ij}^{\ast } $$ a ji = a ij ∗ = g a ij ⋅ ∈ V ij ∗ belongs to the dual space $$ {V}_{ij}^{\ast }. $$ V ij ∗ . The multiplication of T-Hermitian matrices is defined by a system of “isometric” bilinear maps Vij × Vjk → Vij ; i < j < k, such that |aij ⋅ ajk| = |aij| ⋅ |aik|, alm ∈ Vlm. For n = 2, the Hermitian T-algebra ℋn= ℋ2 (V) is determined by a Euclidean vector space V and is isomorphic to a Euclidean Jordan algebra called the spin factor algebra and the associated homogeneous convex cone is the Lorentz cone of timelike future directed vectors in the Minkowski vector space ℝ1,1⊕ V . A special Vinberg Hermitian T-algebra is a rank 3 matrix algebra ℋ3(V; S) associated to a Clifford Cl(V )-module S together with an “admissible” Euclidean metric 𝔤S.We generalize the construction of rank 2 Vinberg algebras ℋ2(V ) and special Vinberg algebras ℋ3(V; S) to the pseudo-Euclidean case, when V is a pseudo-Euclidean vector space and S = S0 ⊕ S1 is a ℤ2-graded Clifford Cl(V )-module with an admissible pseudo-Euclidean metric. The associated cone 𝒱 is a homogeneous, but not convex cone in ℋm; m = 2; 3. We calculate the characteristic function of Koszul-Vinberg for this cone and write down the associated cubic polynomial. We extend Baez’ quantum-mechanical interpretation of the Vinberg cone 𝒱2 ⊂ ℋ2(V ) to the special rank 3 case.



2021 ◽  
Vol 37 (37) ◽  
pp. 156-159
Author(s):  
Jiyuan Tao

In a recent paper [Linear Algebra Appl., 461:92--122, 2014], Tao et al. proved an analog of Thompson's triangle inequality for a simple Euclidean Jordan algebra by using a case-by-case analysis. In this short note, we provide a direct proof that is valid on any Euclidean Jordan algebras.



4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 21
Author(s):  
Luís Vieira

Let G be a primitive strongly regular graph G such that the regularity is less than half of the order of G and A its matrix of adjacency, and let 𝒜 be the real Euclidean Jordan algebra of real symmetric matrices of order n spanned by the identity matrix of order n and the natural powers of A with the usual Jordan product of two symmetric matrices of order n and with the inner product of two matrices being the trace of their Jordan product. Next the spectra of two Hadamard series of 𝒜 associated to A2 is analysed to establish some conditions over the spectra and over the parameters of G.





2014 ◽  
Vol 24 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Behrouz Kheirfam

In this paper, we present a predictor-corrector path-following interior-point algorithm for symmetric cone optimization based on Darvay's technique. Each iteration of the algorithm contains a predictor step and a corrector step based on a modification of the Nesterov and Todd directions. Moreover, we show that the algorithm is well defined and that the obtained iteration bound is o(?rlogr?/?), where r is the rank of Euclidean Jordan algebra.



2013 ◽  
Vol 15 (04) ◽  
pp. 1340034 ◽  
Author(s):  
JIYUAN TAO ◽  
M. SEETHARAMA GOWDA

A Lyapunov-like (linear) transformation L on a Euclidean Jordan algebra V is defined by the condition [Formula: see text]where K is the symmetric cone of V. In this paper, we give an elementary proof (avoiding Lie algebraic ideas and results) of the fact that Lyapunov-like transformations on V are of the form La + D, where a ∈ V, D is a derivation, and La(x) = a ◦ x for all x ∈ V.



2013 ◽  
Vol 15 (04) ◽  
pp. 1340033
Author(s):  
I. JEYARAMAN ◽  
K. C. SIVAKUMAR ◽  
V. VETRIVEL

In this paper, using Moore–Penrose inverse, we characterize the feasibility of primal and dual Stein linear programs over symmetric cones in a Euclidean Jordan algebra V. We give sufficient conditions for the solvability of the Stein linear programming problem. Further, we give a characterization of the globally uniquely solvable property for the Stein transformation in terms of a least element of a set in V in the context of the linear complementarity problem.



2012 ◽  
Vol 29 (02) ◽  
pp. 1250015 ◽  
Author(s):  
G. Q. WANG

In this paper, we present a new polynomial interior-point algorithm for the monotone linear complementarity problem over symmetric cones by employing the framework of Euclidean Jordan algebras. At each iteration, we use only full Nesterov and Todd steps. The currently best known iteration bound for small-update method, namely, [Formula: see text], is obtained, where r denotes the rank of the associated Euclidean Jordan algebra and ε the desired accuracy.



Sign in / Sign up

Export Citation Format

Share Document