algebraic framework
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 14 (1) ◽  
pp. 1-54
Author(s):  
Victor Lagerkvist ◽  
Magnus Wahlström

We study the fine-grained complexity of NP-complete satisfiability (SAT) problems and constraint satisfaction problems (CSPs) in the context of the strong exponential-time hypothesis (SETH) , showing non-trivial lower and upper bounds on the running time. Here, by a non-trivial lower bound for a problem SAT (Γ) (respectively CSP (Γ)) with constraint language Γ, we mean a value c 0 > 1 such that the problem cannot be solved in time O ( c n ) for any c < c 0 unless SETH is false, while a non-trivial upper bound is simply an algorithm for the problem running in time O ( c n ) for some c < 2. Such lower bounds have proven extremely elusive, and except for cases where c 0 =2 effectively no such previous bound was known. We achieve this by employing an algebraic framework, studying constraint languages Γ in terms of their algebraic properties. We uncover a powerful algebraic framework where a mild restriction on the allowed constraints offers a concise algebraic characterization. On the relational side we restrict ourselves to Boolean languages closed under variable negation and partial assignment, called sign-symmetric languages. On the algebraic side this results in a description via partial operations arising from system of identities, with a close connection to operations resulting in tractable CSPs, such as near unanimity operations and edge operations . Using this connection we construct improved algorithms for several interesting classes of sign-symmetric languages, and prove explicit lower bounds under SETH. Thus, we find the first example of an NP-complete SAT problem with a non-trivial algorithm which also admits a non-trivial lower bound under SETH. This suggests a dichotomy conjecture with a close connection to the CSP dichotomy theorem: an NP-complete SAT problem admits an improved algorithm if and only if it admits a non-trivial partial invariant of the above form.


Author(s):  
Andreas Bärmann ◽  
Oskar Schneider

AbstractIn the present work, we consider Zuckerberg’s method for geometric convex-hull proofs introduced in Zuckerberg (Oper Res Lett 44(5):625–629, 2016). It has only been scarcely adopted in the literature so far, despite the great flexibility in designing algorithmic proofs for the completeness of polyhedral descriptions that it offers. We suspect that this is partly due to the rather heavy algebraic framework its original statement entails. This is why we present a much more lightweight and accessible approach to Zuckerberg’s proof technique, building on ideas from Gupte et al. (Discrete Optim 36:100569, 2020). We introduce the concept of set characterizations to replace the set-theoretic expressions needed in the original version and to facilitate the construction of algorithmic proof schemes. Along with this, we develop several different strategies to conduct Zuckerberg-type convex-hull proofs. Very importantly, we also show that our concept allows for a significant extension of Zuckerberg’s proof technique. While the original method was only applicable to 0/1-polytopes, our extended framework allows to treat arbitrary polyhedra and even general convex sets. We demonstrate this increase in expressive power by characterizing the convex hull of Boolean and bilinear functions over polytopal domains. All results are illustrated with indicative examples to underline the practical usefulness and wide applicability of our framework.


2021 ◽  
Author(s):  
Jesse Heyninck ◽  
Ofer Arieli

Approximation fixpoint theory (AFT) constitutes an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In this paper, we extend AFT to non-deterministic constructs such as disjunctive information. This is done by generalizing the main constructions and corresponding results to non-deterministic operators, whose ranges are sets of elements rather than single elements. The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.


Author(s):  
FANGFANG LIU ◽  
JIA-HUAI YOU

Abstract Approximation fixpoint theory (AFT) provides an algebraic framework for the study of fixpoints of operators on bilattices and has found its applications in characterizing semantics for various classes of logic programs and nonmonotonic languages. In this paper, we show one more application of this kind: the alternating fixpoint operator by Knorr et al. for the study of the well-founded semantics for hybrid minimal knowledge and negation as failure (MKNF) knowledge bases is in fact an approximator of AFT in disguise, which, thanks to the abstraction power of AFT, characterizes not only the well-founded semantics but also two-valued as well as three-valued semantics for hybrid MKNF knowledge bases. Furthermore, we show an improved approximator for these knowledge bases, of which the least stable fixpoint is information richer than the one formulated from Knorr et al.’s construction. This leads to an improved computation for the well-founded semantics. This work is built on an extension of AFT that supports consistent as well as inconsistent pairs in the induced product bilattice, to deal with inconsistencies that arise in the context of hybrid MKNF knowledge bases. This part of the work can be considered generalizing the original AFT from symmetric approximators to arbitrary approximators.


Author(s):  
Judit Abardia-Evéquoz ◽  
Andreas Bernig

AbstractWe show the existence of additive kinematic formulas for general flag area measures, which generalizes a recent result by Wannerer. Building on previous work by the second named author, we introduce an algebraic framework to compute these formulas explicitly. This is carried out in detail in the case of the incomplete flag manifold consisting of all $$(p+1)$$ ( p + 1 ) -planes containing a unit vector.


2021 ◽  
Vol 140 (2) ◽  
pp. 138-140
Author(s):  
M.R. Balla ◽  
S. Venigalla ◽  
V. Jaliparthi

2021 ◽  
Vol 9 ◽  
Author(s):  
Stefano Gogioso ◽  
Maria E. Stasinou ◽  
Bob Coecke

We present a compositional algebraic framework to describe the evolution of quantum fields in discretised spacetimes. We show how familiar notions from Relativity and quantum causality can be recovered in a purely order-theoretic way from the causal order of events in spacetime, with no direct mention of analysis or topology. We formulate theory-independent notions of fields over causal orders in a compositional, functorial way. We draw a strong connection to Algebraic Quantum Field Theory (AQFT), using a sheaf-theoretical approach in our definition of spaces of states over regions of spacetime. We introduce notions of symmetry and cellular automata, which we show to subsume existing definitions of Quantum Cellular Automata (QCA) from previous literature. Given the extreme flexibility of our constructions, we propose that our framework be used as the starting point for new developments in AQFT, QCA and more generally Quantum Field Theory.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Pierre-Philippe Dechant

AbstractRecent work has shown that every 3D root system allows the construction of a corresponding 4D root system via an ‘induction theorem’. In this paper, we look at the icosahedral case of $$H_3\rightarrow H_4$$ H 3 → H 4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan–Dieudonné theorem, giving a simple construction of the $${\mathrm {Pin}}$$ Pin and $${\mathrm {Spin}}$$ Spin covers. Using this connection with $$H_3$$ H 3 via the induction theorem sheds light on geometric aspects of the $$H_4$$ H 4 root system (the 600-cell) as well as other related polytopes and their symmetries, such as the famous Grand Antiprism and the snub 24-cell. The uniform construction of root systems from 3D and the uniform procedure of splitting root systems with respect to subrootsystems into separate invariant sets allows further systematic insight into the underlying geometry. All calculations are performed in the even subalgebra of $${\mathrm {Cl}}(3)$$ Cl ( 3 ) , including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes, and are shared as supplementary computational work sheets. This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework.


Sign in / Sign up

Export Citation Format

Share Document