scholarly journals A note on Jeśmanowicz' conjecture concerning Pythagorean triples

1999 ◽  
Vol 59 (3) ◽  
pp. 477-480 ◽  
Author(s):  
Maohua Le

Let n be a positive integer, and let (a, b, c) be a primitive Pythagorean triple. In this paper we give certain conditions for the equation (an)x + (bn)y = (cn)z to have positive integer solutions (x, y, z) with (x, y, z) ≠ (2, 2, 2). In particular, we show that x, y and z must be distinct.

2021 ◽  
Vol 5 (1) ◽  
pp. 115-127
Author(s):  
Van Thien Nguyen ◽  
◽  
Viet Kh. Nguyen ◽  
Pham Hung Quy ◽  
◽  
...  

Let \((a, b, c)\) be a primitive Pythagorean triple parameterized as \(a=u^2-v^2, b=2uv, c=u^2+v^2\), where \(u>v>0\) are co-prime and not of the same parity. In 1956, L. Jesmanowicz conjectured that for any positive integer \(n\), the Diophantine equation \((an)^x+(bn)^y=(cn)^z\) has only the positive integer solution \((x,y,z)=(2,2,2)\). In this connection we call a positive integer solution \((x,y,z)\ne (2,2,2)\) with \(n>1\) exceptional. In 1999 M.-H. Le gave necessary conditions for the existence of exceptional solutions which were refined recently by H. Yang and R.-Q. Fu. In this paper we give a unified simple proof of the theorem of Le-Yang-Fu. Next we give necessary conditions for the existence of exceptional solutions in the case \(v=2,\ u\) is an odd prime. As an application we show the truth of the Jesmanowicz conjecture for all prime values \(u < 100\).


2016 ◽  
Vol 95 (1) ◽  
pp. 5-13 ◽  
Author(s):  
MOU-JIE DENG ◽  
DONG-MING HUANG

Let $a,b,c$ be a primitive Pythagorean triple and set $a=m^{2}-n^{2},b=2mn,c=m^{2}+n^{2}$, where $m$ and $n$ are positive integers with $m>n$, $\text{gcd}(m,n)=1$ and $m\not \equiv n~(\text{mod}~2)$. In 1956, Jeśmanowicz conjectured that the only positive integer solution to the Diophantine equation $(m^{2}-n^{2})^{x}+(2mn)^{y}=(m^{2}+n^{2})^{z}$ is $(x,y,z)=(2,2,2)$. We use biquadratic character theory to investigate the case with $(m,n)\equiv (2,3)~(\text{mod}~4)$. We show that Jeśmanowicz’ conjecture is true in this case if $m+n\not \equiv 1~(\text{mod}~16)$ or $y>1$. Finally, using these results together with Laurent’s refinement of Baker’s theorem, we show that Jeśmanowicz’ conjecture is true if $(m,n)\equiv (2,3)~(\text{mod}~4)$ and $n<100$.


Author(s):  
YASUTSUGU FUJITA ◽  
MAOHUA LE

Abstract Jeśmanowicz conjectured that $(x,y,z)=(2,2,2)$ is the only positive integer solution of the equation $(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$ , where n is a positive integer and f, g are positive integers such that $f>g$ , $\gcd (\kern1.5pt f,g)=1$ and $f \not \equiv g\pmod 2$ . Using Baker’s method, we prove that: (i) if $n>1$ , $f \ge 98$ and $g=1$ , then $(*)$ has no positive integer solutions $(x,y,z)$ with $x>z>y$ ; and (ii) if $n>1$ , $f=2^rs^2$ and $g=1$ , where r, s are positive integers satisfying $(**)\; 2 \nmid s$ and $s<2^{r/2}$ , then $(*)$ has no positive integer solutions $(x,y,z)$ with $y>z>x$ . Thus, Jeśmanowicz’ conjecture is true if $f=2^rs^2$ and $g=1$ , where r, s are positive integers satisfying $(**)$ .


1998 ◽  
Vol 21 (3) ◽  
pp. 581-586
Author(s):  
Geoffrey B. Campbell

We obtain infinite products related to the concept of visible from the origin point vectors. Among these is∏k=3∞(1−Z)φ,(k)/k=11−Zexp(Z32(1−Z)2−12Z−12Z(1−Z)),  |Z|<1,in whichφ3(k)denotes for fixedk, the number of positive integer solutions of(a,b,k)=1wherea<b<k, assuming(a,b,k)is thegcd(a,b,k).


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


2011 ◽  
Vol 90 (3) ◽  
pp. 355-370
Author(s):  
TAKAFUMI MIYAZAKI

AbstractLet (a,b,c) be a primitive Pythagorean triple such that b is even. In 1956, Jeśmanowicz conjectured that the equation ax+by=cz has the unique solution (x,y,z)=(2,2,2) in the positive integers. This is one of the most famous unsolved problems on Pythagorean triples. In this paper we propose a similar problem (which we call the shuffle variant of Jeśmanowicz’ problem). Our problem states that the equation cx+by=az with x,y and z positive integers has the unique solution (x,y,z)=(1,1,2) if c=b+1 and has no solutions if c>b+1 . We prove that the shuffle variant of the Jeśmanowicz problem is true if c≡1 mod b.


2018 ◽  
Vol 61 (03) ◽  
pp. 535-544
Author(s):  
TOMOHIRO YAMADA

AbstractWe shall show that, for any positive integer D &gt; 0 and any primes p1, p2, the diophantine equation x2 + D = 2sp1kp2l has at most 63 integer solutions (x, k, l, s) with x, k, l ≥ 0 and s ∈ {0, 2}.


2013 ◽  
Vol 89 (2) ◽  
pp. 316-321 ◽  
Author(s):  
MOU JIE DENG

AbstractLet $(a, b, c)$ be a primitive Pythagorean triple satisfying ${a}^{2} + {b}^{2} = {c}^{2} . $ In 1956, Jeśmanowicz conjectured that for any given positive integer $n$ the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $x= y= z= 2. $ In this paper, for the primitive Pythagorean triple $(a, b, c)= (4{k}^{2} - 1, 4k, 4{k}^{2} + 1)$ with $k= {2}^{s} $ for some positive integer $s\geq 0$, we prove the conjecture when $n\gt 1$ and certain divisibility conditions are satisfied.


2020 ◽  
Vol 4 (2) ◽  
pp. 103
Author(s):  
Leomarich F Casinillo ◽  
Emily L Casinillo

A Pythagorean triple is a set of three positive integers a, b and c that satisfy the Diophantine equation a^2+b^2=c^2. The triple is said to be primitive if gcd(a, b, c)=1 and each pair of integers and  are relatively prime, otherwise known as non-primitive. In this paper, the generalized version of the formula that generates primitive and non-primitive Pythagorean triples that depends on two positive integers  k and n, that is, P_T=(a(k, n), b(k, n), c(k, n)) were constructed. Further, we determined the values of  k and n that generates primitive Pythagorean triples and give some important results.


Sign in / Sign up

Export Citation Format

Share Document