scholarly journals The skeleton of a variety of groups

1972 ◽  
Vol 6 (3) ◽  
pp. 357-378 ◽  
Author(s):  
R.M. Bryant ◽  
L.G. Kovács

The skeleton of a variety of groups is defined to be the intersection of the section closed classes of groups which generate . If m is an integer, m > 1, is the variety of all abelian groups of exponent dividing m, and , is any locally finite variety, it is shown that the skeleton of the product variety is the section closure of the class of finite monolithic groups in . In particular, S) generates . The elements of S are described more explicitly and as a consequence it is shown that S consists of all finite groups in if and only if m is a power of some prime p and the centre of the countably infinite relatively free group of , is a p–group.

2010 ◽  
Vol 20 (05) ◽  
pp. 671-688
Author(s):  
UZY HADAD

We give bounds on Kazhdan constants of abelian extensions of (finite) groups. As a corollary, we improved known results of Kazhdan constants for some meta-abelian groups and for the relatively free group in the variety of p-groups of lower p-series of class 2. Furthermore, we calculate Kazhdan constants of the tame automorphism groups of the free nilpotent groups.


1993 ◽  
Vol 114 (1) ◽  
pp. 143-147 ◽  
Author(s):  
R. M. Bryant ◽  
C. K. Gupta

Let Fn be a free group of finite rank n with basis {x1,…, xn}. Let be a variety of groups and write for the verbal subgroup of Fn corresponding to . (See [11] for information on varieties and related concepts.) Every automorphism of Fn induces an automorphism of the relatively free group Fn/V, and those automorphisms of Fn/V arising in this way are called tame. If is the variety of all metabelian groups and n ╪ 3 then every automorphism of Fn/V is tame [2, 4, 12]. But this is an exceptional situation. For many (and probably most) other varieties , Fn/V has non-tame automorphisms for all sufficiently large n. This holds for the variety of all nilpotent groups of class at most c where c ≥ 3 [1, 3] and for nearly all product varieties including, in particular, the variety of all groups whose derived groups are nilpotent of class at most c, where c > 2 [10, 13].


Author(s):  
P. Agliano ◽  
J. B. Nation

AbstractWe consider the lattice of pseudovarieties contained in a given pseudovariety P. It is shown that if the lattice L of subpseudovarieties of P has finite height, then L is isomorphic to the lattice of subvarieties of a locally finite variety. Thus not every finite lattice is isomorphic to a lattice of subpseudovarieties. Moreover, the lattice of subpseudovarieties of P satisfies every positive universal sentence holding in all lattice of subvarieties of varieties V(A) ganarated by algebras A ε P.


Author(s):  
C. K. Gupta ◽  
A. N. Krasil'nikov

AbstractLet K be an arbitrary field of characteristic 2, F a free group of countably infinite rank. We construct a finitely generated fully invariant subgroup U in F such that the relatively free group F/U satisfies the maximal condition on fully invariant subgroups but the group algebra K (F/U) does not satisfy the maximal condition on fully invariant ideals. This solves a problem posed by Plotkin and Vovsi. Using the developed techniques we also construct the first example of a non-finitely based (nilpotent of class 2)-by-(nilpotent of class 2) variety whose Abelian-by-(nilpotent of class at most 2) groups form a hereditarily finitely based subvariety.


1987 ◽  
Vol 30 (1) ◽  
pp. 115-120
Author(s):  
O. Macedońska

Let G denote a relatively free group of a finite or countably infinite rank with a fixed set of free generators x1,x2,…,G′ the commutator subgroup, and V a verbal subgroup belonging to G′. Following H. Neumann [6] we shall use the vector representation for endomorphisms of G. Vector v = (ν1, ν2,…) represents an endomorphism v such that xiv = νi for all i. The identity map is represented by l=(x1,x2…). We need also thetrivial endomorphism 0 = (e, e,…). The length of vectors is equal to the rank of G. We shall consider the near-ring of vectors, with addition and multiplication given below u + v=(ulν1, u2ν2,…) where uiνi; is a product in G, and uv = (u1v, u2v,…) where uiv isthe image of ui, under the endomorphism v. There is only one distributivity law (u + v)w =uw + vw.


1998 ◽  
Vol 08 (04) ◽  
pp. 443-466 ◽  
Author(s):  
Lev S. Kazarin ◽  
Leonid A. Kurdachenko ◽  
Igor Ya. Subbotin

Groups with the weak maximal condition on non-abelian subgroups are the main subject of this research. Locally finite groups with this property are abelian or Chemikov. Non-abelian groups with the weak maximal condition on non-abelian subgroups, which have an ascending series of normal subgroups with locally nilpotent or locally finite factors, are described in this article.


1974 ◽  
Vol 17 (2) ◽  
pp. 222-233 ◽  
Author(s):  
Narain Gupta ◽  
Frank Levin

Any variety of groups is generated by its free group of countably infinite rank. A problem that appears in various forms in Hanna Neumann's book [7] (see, for intance, sections 2.4, 2.5, 3.5, 3.6) is that of determining if a given variety B can be generated by Fk(B), one of its free groups of finite rank; and if so, if Fn(B) is residually a k-generator group for all n ≧ k. (Here, as in the sequel, all unexplained notation follows [7].)


2020 ◽  
Vol 23 (5) ◽  
pp. 831-846
Author(s):  
Anna Giordano Bruno ◽  
Flavio Salizzoni

AbstractAdditivity with respect to exact sequences is, notoriously, a fundamental property of the algebraic entropy of group endomorphisms. It was proved for abelian groups by using the structure theorems for such groups in an essential way. On the other hand, a solvable counterexample was recently found, showing that it does not hold in general. Nevertheless, we give a rather short proof of the additivity of algebraic entropy for locally finite groups that are either quasihamiltonian or FC-groups.


10.29007/8fkc ◽  
2018 ◽  
Author(s):  
Alex Citkin

Grounding on defining relations of a finitely presentable subdirectly irreducible (s.i.) algebra in a variety with a ternary deductive term (TD), we define the characteristic identity of this algebra. For finite s.i. algebras the characteristic identity is equivalent to the identity obtained from Jankov formula. In contrast to Jankov formula, characteristic identity is relative to a variety and even in the varieties of Heyting algebras there are the characteristic identities not related to Jankov formula. Every subvariety of a given locally finite variety with a TD term admits an optimal axiomatization consisting of characteristic identities. There is an algorithm that reduces any finite system of axioms of such a variety to an optimal one. Each variety with a TD term can be axiomatized by characteristic identities of partial algebras, and in certain cases these identities are related to the canonical formulas.


Sign in / Sign up

Export Citation Format

Share Document