relatively free group
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 54 (2 (252)) ◽  
pp. 81-86
Author(s):  
V.S. Atabekyan

In this paper we prove that the set of non-isomorphic 2-generated $C^*$-simple relatively free groups has the cardinality of the continuum. A non-trivial identity is satisfied in any (not absolutely free) relatively free group. Hence, they cannot contain a non-abelian absolutely free subgroups. The question of the existence of $C^*$-simple groups without free subgroups of rank 2 was posed by de la Harpe in 2007.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250030
Author(s):  
LUCAS SABALKA ◽  
DMYTRO SAVCHUK

Let G be a finitely generated free, free abelian of arbitrary exponent, free nilpotent, or free solvable group, or a free group in the variety AmAn, and let A = {a1,…, ar} be a basis for G. We prove that, in most cases, if S is a subset of a basis for G which may be expressed as a word in A without using elements from {al+1,…, ar} for some l < r, then S is a subset of a basis for the relatively free group on {a1,…, al}.


2011 ◽  
Vol 21 (03) ◽  
pp. 473-484
Author(s):  
IGOR DOLINKA

By adjusting a method of Kadourek and Polák developed for free semigroups satisfying xr ≏ x, we prove that if [Formula: see text] is a periodic group variety, then any maximal subgroup of the free object in the completely regular semigroup variety of the form [Formula: see text] is a relatively free group in [Formula: see text] over a suitable set of free generators. When [Formula: see text] is locally finite, we provide some bounds for the sizes of its finitely generated members.


2010 ◽  
Vol 20 (05) ◽  
pp. 671-688
Author(s):  
UZY HADAD

We give bounds on Kazhdan constants of abelian extensions of (finite) groups. As a corollary, we improved known results of Kazhdan constants for some meta-abelian groups and for the relatively free group in the variety of p-groups of lower p-series of class 2. Furthermore, we calculate Kazhdan constants of the tame automorphism groups of the free nilpotent groups.


2004 ◽  
Vol 14 (03) ◽  
pp. 311-323 ◽  
Author(s):  
A. I. PAPISTAS

For positive integers n and c, with n≥2, let Gn,c be a relatively free group of rank n in the variety N2A∧AN2∧Nc. It is shown that there exists an explicitly described finite subset Ω of IA-automorphisms of Gn,c such that the cardinality of Ω is independent upon n and c and the subgroup of the automorphism group Aut (Gn,c) of Gn,c generated by the tame automorphisms and Ω has finite index in Aut (Gn,c). This is a simpler result than one given in [12, Theorem 1(I)]. Let L(Gn,c) be the associated Lie ring of Gn,c and K be a field of characteristic zero. The method developed in the proof of the aforementioned result is applied in order to find an explicitly described finite subset ΩL of the IA-automorphism group of K⊗L(Gn,c) such that the automorphism group of K⊗L(Gn,c) is generated by GL (n,K) and ΩL. In particular, for n≥3, the cardinality of ΩL is independent upon n and c.


2001 ◽  
Vol 63 (3) ◽  
pp. 607-622 ◽  
Author(s):  
ATHANASSIOS I. PAPISTAS

For positive integers n and c, with n [ges ] 2, let Gn, c be a relatively free group of finite rank n in the variety N2A ∧ AN2 ∧ Nc. It is shown that the subgroup of the automorphism group Aut(Gn, c) of Gn, c generated by the tame automorphisms and an explicitly described finite set of IA-automorphisms of Gn, c has finite index in Aut(Gn, c). Furthermore, it is proved that there are no non-trivial elements of Gn, c fixed by every tame automorphism of Gn, c.


Author(s):  
C. K. Gupta ◽  
A. N. Krasil'nikov

AbstractLet K be an arbitrary field of characteristic 2, F a free group of countably infinite rank. We construct a finitely generated fully invariant subgroup U in F such that the relatively free group F/U satisfies the maximal condition on fully invariant subgroups but the group algebra K (F/U) does not satisfy the maximal condition on fully invariant ideals. This solves a problem posed by Plotkin and Vovsi. Using the developed techniques we also construct the first example of a non-finitely based (nilpotent of class 2)-by-(nilpotent of class 2) variety whose Abelian-by-(nilpotent of class at most 2) groups form a hereditarily finitely based subvariety.


1995 ◽  
Vol 118 (3) ◽  
pp. 449-466 ◽  
Author(s):  
Ralph Stöhr

In this paper we study the homology of groups with coefficients in metabelian Lie powers, and apply the results to obtain information about elements of finite order in certain free central extensions of groups. Perhaps the most prominent example to which our results apply is the relatively free groupwhere Fd is the (absolutely) free group of rank d. Thus Fd(Bc) is the free group of rank d in the variety Bc of all groups which are both centre-by-(nilpotent of class ≤ c − 1)-by-abelian and soluble of derived length ≤ 3. It was pointed out in [1] that the order of any torsion element in Fd(Bc) divides c if c is odd and 2c if c is even. This, however, is a conditional result as it does not answer the question of whether or not there are any torsion elements in (1·1). Up to now, this question had only been answered in case when c is a prime number [1] or c = 4 [8]. In these cases Fd (Bc) is torsion-free if d ≤ 3, and elements of finite order do occur in Fd(Bc) if d ≥ 4. Moreover, the torsion elements in Fd(Bc) form a subgroup, and the precise structure of this torsion subgroup was exhibited in [1] in the case when c is a prime and in [8] for c = 4. In the present paper we add to this knowledge. On the one hand, we show that for any prime p dividing c the group Fd(Bc) has no elements of order p for all d up to a certain upper bound, which takes arbitrarily large values as c varies over all multiples of p. On the other hand, we show that for prime powers does contain elements of order p whenever d ≥ 4. Finally, we exhibit the precise structure of the p-torsion subgroup of when p ≠ 2. Precise statements are given below (Corollaries 1 and 2). Our results on (1·1) are a special case of more general results (Theorems 1′−3′) which refer to a much wider class of groups, and which are, in their turn, a consequence of our main results on the homology of metabelian Lie powers (Theorems 1–3).


1993 ◽  
Vol 114 (1) ◽  
pp. 143-147 ◽  
Author(s):  
R. M. Bryant ◽  
C. K. Gupta

Let Fn be a free group of finite rank n with basis {x1,…, xn}. Let be a variety of groups and write for the verbal subgroup of Fn corresponding to . (See [11] for information on varieties and related concepts.) Every automorphism of Fn induces an automorphism of the relatively free group Fn/V, and those automorphisms of Fn/V arising in this way are called tame. If is the variety of all metabelian groups and n ╪ 3 then every automorphism of Fn/V is tame [2, 4, 12]. But this is an exceptional situation. For many (and probably most) other varieties , Fn/V has non-tame automorphisms for all sufficiently large n. This holds for the variety of all nilpotent groups of class at most c where c ≥ 3 [1, 3] and for nearly all product varieties including, in particular, the variety of all groups whose derived groups are nilpotent of class at most c, where c > 2 [10, 13].


1987 ◽  
Vol 30 (1) ◽  
pp. 115-120
Author(s):  
O. Macedońska

Let G denote a relatively free group of a finite or countably infinite rank with a fixed set of free generators x1,x2,…,G′ the commutator subgroup, and V a verbal subgroup belonging to G′. Following H. Neumann [6] we shall use the vector representation for endomorphisms of G. Vector v = (ν1, ν2,…) represents an endomorphism v such that xiv = νi for all i. The identity map is represented by l=(x1,x2…). We need also thetrivial endomorphism 0 = (e, e,…). The length of vectors is equal to the rank of G. We shall consider the near-ring of vectors, with addition and multiplication given below u + v=(ulν1, u2ν2,…) where uiνi; is a product in G, and uv = (u1v, u2v,…) where uiv isthe image of ui, under the endomorphism v. There is only one distributivity law (u + v)w =uw + vw.


Sign in / Sign up

Export Citation Format

Share Document