scholarly journals SCHREIER CONDITIONS ON CHIEF FACTORS AND RESIDUALS OF SOLVABLE-LIKE GROUP FORMATIONS

2008 ◽  
Vol 78 (1) ◽  
pp. 97-106
Author(s):  
GIL KAPLAN ◽  
DAN LEVY

AbstractLet α be a formation of finite groups which is closed under subgroups and group extensions and which contains the formation of solvable groups. Let G be any finite group. We state and prove equivalences between conditions on chief factors of G and structural characterizations of the α-residual and theα-radical of G. We also discuss the connection of our results to the generalized Fitting subgroup of G.

2019 ◽  
Vol 109 (3) ◽  
pp. 340-350
Author(s):  
E. I. KHUKHRO ◽  
P. SHUMYATSKY ◽  
G. TRAUSTASON

AbstractLet $g$ be an element of a finite group $G$ and let $R_{n}(g)$ be the subgroup generated by all the right Engel values $[g,_{n}x]$ over $x\in G$. In the case when $G$ is soluble we prove that if, for some $n$, the Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the $(k+1)$th Fitting subgroup $F_{k+1}(G)$. For nonsoluble $G$, it is proved that if, for some $n$, the generalized Fitting height of $R_{n}(g)$ is equal to $k$, then $g$ belongs to the generalized Fitting subgroup $F_{f(k,m)}^{\ast }(G)$ with $f(k,m)$ depending only on $k$ and $m$, where $|g|$ is the product of $m$ primes counting multiplicities. It is also proved that if, for some $n$, the nonsoluble length of $R_{n}(g)$ is equal to $k$, then $g$ belongs to a normal subgroup whose nonsoluble length is bounded in terms of $k$ and $m$. Earlier, similar generalizations of Baer’s theorem (which states that an Engel element of a finite group belongs to the Fitting subgroup) were obtained by the first two authors in terms of left Engel-type subgroups.


1991 ◽  
Vol 56 (4) ◽  
pp. 1391-1399 ◽  
Author(s):  
Ali Nesin

AbstractWe define a characteristic and definable subgroup F*(G) of any group G of finite Morley rank that behaves very much like the generalized Fitting subgroup of a finite group. We also prove that semisimple subnormal subgroups of G are all definable and that there are finitely many of them.


2018 ◽  
Vol 21 (6) ◽  
pp. 1095-1110
Author(s):  
Alexander A. Buturlakin ◽  
Danila O. Revin ◽  
Andrey V. Vasil’ev

Abstract Let G be a locally finite group and let {F(G)} be the Hirsch–Plotkin radical of G. Let S denote the full inverse image of the generalized Fitting subgroup of {G/F(G)} in G. Assume that there is a number k such that the length of every nested chain of centralizers in G does not exceed k. The Borovik–Khukhro conjecture states, in particular, that under this assumption, the quotient {G/S} contains an abelian subgroup of finite index bounded in terms of k. We disprove this statement and prove a weak analogue of it.


2010 ◽  
Vol 81 (2) ◽  
pp. 317-328 ◽  
Author(s):  
MARCEL HERZOG ◽  
PATRIZIA LONGOBARDI ◽  
MERCEDE MAJ

AbstractLet G be a finitely generated group. We investigate the graph ΓM(G), whose vertices are the maximal subgroups of G and where two vertices M1 and M2 are joined by an edge whenever M1∩M2≠1. We show that if G is a finite simple group then the graph ΓM(G) is connected and its diameter is 62 at most. We also show that if G is a finite group, then ΓM(G) either is connected or has at least two vertices and no edges. Finite groups G with a nonconnected graph ΓM(G) are classified. They are all solvable groups, and if G is a finite solvable group with a connected graph ΓM(G), then the diameter of ΓM(G) is at most 2. In the infinite case, we determine the structure of finitely generated infinite nonsimple groups G with a nonconnected graph ΓM(G). In particular, we show that if G is a finitely generated locally graded group with a nonconnected graph ΓM(G), then G must be finite.


1982 ◽  
Vol 25 (1) ◽  
pp. 19-20 ◽  
Author(s):  
U. Dempwolff ◽  
S. K. Wong

In [3] Laffey has shown that if Z is a cyclic subgroup of a finite subgroup G, then either a nontrivial subgroup of Z is normal in the Fitting subgroup F(G) or there exists a g in G such that Zg∩Z = 1. In this note we offer a simple proof of the following generalisation of that result:Theorem. Let G be a finite group and X and Y cyclic subgroups of G. Then there exists a g in G such that Xg∩Y⊴F(G).


1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.


1974 ◽  
Vol 18 (3) ◽  
pp. 262-264 ◽  
Author(s):  
Donald K. Friesen

A well known theorem ([1] page 432) in the study of finite groups states that if P is a Sylow p-subgroup of the finite group G, and if P0 is a normal subgroup of P such that whenever two elements, σ and τ, of P are conjugate in G, the cosets σP0 and τP0 are conjugate in P/P0, then there is a normal subgroup K of G such that G = KP and K ∩ P = P0. In this note we will extend this result to allow P to be any Hall subgroup if G is solvable. More precisely, following theorem will be the proved.


2009 ◽  
Vol 52 (1) ◽  
pp. 145-150 ◽  
Author(s):  
YANGMING LI ◽  
LIFANG WANG ◽  
YANMING WANG

AbstractLet ℨ be a complete set of Sylow subgroups of a finite group G; that is to say for each prime p dividing the order of G, ℨ contains one and only one Sylow p-subgroup of G. A subgroup H of G is said to be ℨ-permutable in G if H permutes with every member of ℨ. In this paper we characterise the structure of finite groups G with the assumption that (1) all the subgroups of Gp ∈ ℨ are ℨ-permutable in G, for all prime p ∈ π(G), or (2) all the subgroups of Gp ∩ F*(G) are ℨ-permutable in G, for all Gp ∈ ℨ and p ∈ π(G), where F*(G) is the generalised Fitting subgroup of G.


Author(s):  
Benjamin Sambale

AbstractMotivated by recent results on the minimal base of a permutation group, we introduce a new local invariant attached to arbitrary finite groups. More precisely, a subset $$\Delta $$ Δ of a finite group G is called a p-base (where p is a prime) if $$\langle \Delta \rangle $$ ⟨ Δ ⟩ is a p-group and $$\mathrm {C}_G(\Delta )$$ C G ( Δ ) is p-nilpotent. Building on results of Halasi–Maróti, we prove that p-solvable groups possess p-bases of size 3 for every prime p. For other prominent groups, we exhibit p-bases of size 2. In fact, we conjecture the existence of p-bases of size 2 for every finite group. Finally, the notion of p-bases is generalized to blocks and fusion systems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


Sign in / Sign up

Export Citation Format

Share Document