scholarly journals ON THE DIOPHANTINE EQUATION (8n)x+(15n)y=(17n)z

2012 ◽  
Vol 86 (2) ◽  
pp. 348-352 ◽  
Author(s):  
ZHI-JUAN YANG ◽  
MIN TANG

AbstractLet a,b,c be relatively prime positive integers such that a2+b2=c2. Half a century ago, Jeśmanowicz [‘Several remarks on Pythagorean numbers’, Wiadom. Mat.1 (1955/56), 196–202] conjectured that for any given positive integer n the only solution of (an)x+(bn)y=(cn)z in positive integers is (x,y,z)=(2,2,2). In this paper, we show that (8n)x+(15n)y=(17n)z has no solution in positive integers other than (x,y,z)=(2,2,2).

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2013 ◽  
Vol 89 (2) ◽  
pp. 316-321 ◽  
Author(s):  
MOU JIE DENG

AbstractLet $(a, b, c)$ be a primitive Pythagorean triple satisfying ${a}^{2} + {b}^{2} = {c}^{2} . $ In 1956, Jeśmanowicz conjectured that for any given positive integer $n$ the only solution of $\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is $x= y= z= 2. $ In this paper, for the primitive Pythagorean triple $(a, b, c)= (4{k}^{2} - 1, 4k, 4{k}^{2} + 1)$ with $k= {2}^{s} $ for some positive integer $s\geq 0$, we prove the conjecture when $n\gt 1$ and certain divisibility conditions are satisfied.


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


2012 ◽  
Vol 08 (03) ◽  
pp. 813-821 ◽  
Author(s):  
ZHONGFENG ZHANG ◽  
PINGZHI YUAN

Let a, b, c be integers. In this paper, we prove the integer solutions of the equation axy + byz + czx = 0 satisfy max {|x|, |y|, |z|} ≤ 2 max {a, b, c} when a, b, c are odd positive integers, and when a = b = 1, c = -1, the positive integer solutions of the equation satisfy max {x, y, z} < exp ( exp ( exp (5))).


2014 ◽  
Vol 90 (1) ◽  
pp. 9-19 ◽  
Author(s):  
TAKAFUMI MIYAZAKI ◽  
NOBUHIRO TERAI

AbstractLet $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.


2013 ◽  
Vol 94 (1) ◽  
pp. 50-105 ◽  
Author(s):  
CHRISTIAN ELSHOLTZ ◽  
TERENCE TAO

AbstractFor any positive integer $n$, let $f(n)$ denote the number of solutions to the Diophantine equation $$\begin{eqnarray*}\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\end{eqnarray*}$$ with $x, y, z$ positive integers. The Erdős–Straus conjecture asserts that $f(n)\gt 0$ for every $n\geq 2$. In this paper we obtain a number of upper and lower bounds for $f(n)$ or $f(p)$ for typical values of natural numbers $n$ and primes $p$. For instance, we establish that $$\begin{eqnarray*}N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\ll \displaystyle \sum _{p\leq N}f(p)\ll N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\log \log N.\end{eqnarray*}$$ These upper and lower bounds show that a typical prime has a small number of solutions to the Erdős–Straus Diophantine equation; small, when compared with other additive problems, like Waring’s problem.


2009 ◽  
Vol 05 (06) ◽  
pp. 1117-1128 ◽  
Author(s):  
FADWA S. ABU MURIEFAH ◽  
FLORIAN LUCA ◽  
SAMIR SIKSEK ◽  
SZABOLCS TENGELY

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x,y with gcd (x,y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4), we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequences due to Bilu, Hanrot and Voutier. We illustrate our approach by solving completely the equations x2 + 17a1 = 2yn, x2 + 5a113a2 = 2yn and x2 + 3a111a2 = 2yn.


2006 ◽  
Vol 02 (02) ◽  
pp. 195-206 ◽  
Author(s):  
MICHAEL A. BENNETT ◽  
ALAIN TOGBÉ ◽  
P. G. WALSH

Bumby proved that the only positive integer solutions to the quartic Diophantine equation 3X4 - 2Y2 = 1 are (X, Y) = (1, 1),(3, 11). In this paper, we use Thue's hypergeometric method to prove that, for each integer m ≥ 1, the only positive integers solutions to the Diophantine equation (m2 + m + 1)X4 - (m2 + m)Y2 = 1 are (X,Y) = (1, 1),(2m + 1, 4m2 + 4m + 3).


2016 ◽  
Vol 95 (1) ◽  
pp. 5-13 ◽  
Author(s):  
MOU-JIE DENG ◽  
DONG-MING HUANG

Let $a,b,c$ be a primitive Pythagorean triple and set $a=m^{2}-n^{2},b=2mn,c=m^{2}+n^{2}$, where $m$ and $n$ are positive integers with $m>n$, $\text{gcd}(m,n)=1$ and $m\not \equiv n~(\text{mod}~2)$. In 1956, Jeśmanowicz conjectured that the only positive integer solution to the Diophantine equation $(m^{2}-n^{2})^{x}+(2mn)^{y}=(m^{2}+n^{2})^{z}$ is $(x,y,z)=(2,2,2)$. We use biquadratic character theory to investigate the case with $(m,n)\equiv (2,3)~(\text{mod}~4)$. We show that Jeśmanowicz’ conjecture is true in this case if $m+n\not \equiv 1~(\text{mod}~16)$ or $y>1$. Finally, using these results together with Laurent’s refinement of Baker’s theorem, we show that Jeśmanowicz’ conjecture is true if $(m,n)\equiv (2,3)~(\text{mod}~4)$ and $n<100$.


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


Sign in / Sign up

Export Citation Format

Share Document