scholarly journals On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.

2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


2014 ◽  
Vol 90 (1) ◽  
pp. 9-19 ◽  
Author(s):  
TAKAFUMI MIYAZAKI ◽  
NOBUHIRO TERAI

AbstractLet $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.


2018 ◽  
Vol 8 (1) ◽  
pp. 109-114
Author(s):  
Apoloniusz Tyszka

Abstract We define a computable function f from positive integers to positive integers. We formulate a hypothesis which states that if a system S of equations of the forms xi· xj = xk and xi + 1 = xi has only finitely many solutions in non-negative integers x1, . . . , xi, then the solutions of S are bounded from above by f (2n). We prove the following: (1) the hypothesis implies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (3) the hypothesis implies that the question of whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (4) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, thenMis computable.


1970 ◽  
Vol 13 (2) ◽  
pp. 255-259 ◽  
Author(s):  
R. A. Macleod ◽  
I. Barrodale

Using the theory of algebraic numbers, Mordell [1] has shown that the Diophantine equation1possesses only two solutions in positive integers; these are given by n = 2, m = 1, and n = 14, m = 5. We are interested in positive integer solutions to the generalized equation2and in this paper we prove for several choices of k and l that (2) has no solutions, in other cases the only solutions are given, and numerical evidence for all values of k and l for which max (k, l) ≤ 15 is also exhibited.


2015 ◽  
Vol 11 (04) ◽  
pp. 1107-1114 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let D1, D2, D, k, λ be fixed integers such that D1 ≥ 1, D2 ≥ 1, gcd (D1, D2) = 1, D = D1D2 is not a square, ∣k∣ > 1, gcd (D, k) = 1 and λ = 1 or 4 according as 2 ∤ k or not. In this paper, we prove that every solution class S(l) of the equation D1x2-D2y2 = λkz, gcd (x, y) = 1, z > 0, has a unique positive integer solution [Formula: see text] satisfying [Formula: see text] and [Formula: see text], where z runs over all integer solutions (x,y,z) of S(l),(u1,v1) is the fundamental solution of Pell's equation u2 - Dv2 = 1. This result corrects and improves some previous results given by M. H. Le.


2017 ◽  
Vol 7 (1) ◽  
pp. 17-23
Author(s):  
Apoloniusz Tyszka

Abstract Let Bn = {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}} denote the system of equations in the variables x1, . . . , xn. For a positive integer n, let _(n) denote the smallest positive integer b such that for each system of equations S ⊆ Bn with a unique solution in positive integers x1, . . . , xn, this solution belongs to [1, b]n. Let g(1) = 1, and let g(n + 1) = 22g(n) for every positive integer n. We conjecture that ξ (n) 6 g(2n) for every positive integer n. We prove: (1) the function ξ : N \ {0} → N \ {0} is computable in the limit; (2) if a function f : N \ {0} → N \ {0} has a single-fold Diophantine representation, then there exists a positive integer m such that f (n) < ξ (n) for every integer n > m; (3) the conjecture implies that there exists an algorithm which takes as input a Diophantine equation D(x1, . . . , xp) = 0 and returns a positive integer d with the following property: for every positive integers a1, . . . , ap, if the tuple (a1, . . . , ap) solely solves the equation D(x1, . . . , xp) = 0 in positive integers, then a1, . . . , ap 6 d; (4) the conjecture implies that if a set M ⊆ N has a single-fold Diophantine representation, then M is computable; (5) for every integer n > 9, the inequality ξ (n) < (22n−5 − 1)2n−5 + 1 implies that 22n−5 + 1 is composite.


2010 ◽  
Vol 107 (2) ◽  
pp. 161
Author(s):  
Bo He ◽  
Alain Togbé ◽  
Shichun Yang

Let $a,b,$ and $c$ be positive integers. We show that if $(a,b) =(N^k-1,N)$, where $N,k\geq 2$, then there is at most one positive integer solution $(x,y)$ to the exponential Diophantine equation $|a^x-b^y|=c$, unless $(N,k)=(2,2)$. Combining this with results of Bennett [3] and the first author [6], we stated all cases for which the equation $|(N^k \pm 1)^x - N^y|=c$ has more than one positive integer solutions $(x,y)$.


2021 ◽  
Vol 27 (3) ◽  
pp. 123-129
Author(s):  
Yasutsugu Fujita ◽  
◽  
Maohua Le ◽  

For any positive integer t, let ord_2 t denote the order of 2 in the factorization of t. Let a,\,b be two distinct fixed positive integers with \min\{a,b\}>1. In this paper, using some elementary number theory methods, the existence of positive integer solutions (x,n) of the polynomial-exponential Diophantine equation (*) (a^n-1)(b^n-1)=x^2 with n>2 is discussed. We prove that if \{a,b\}\ne \{13,239\} and ord_2(a^2-1)\ne ord_2(b^2-1), then (*) has no solutions (x,n) with 2\mid n. Thus it can be seen that if \{a,b\}\equiv \{3,7\},\{3,15\},\{7,11\},\{7,15\} or \{11,15\} \pmod{16}, where \{a,b\} \equiv \{a_0,b_0\} \pmod{16} means either a \equiv a_0 \pmod{16} and b \equiv b_0\pmod{16} or a\equiv b_0 \pmod{16} and b\equiv a_0 \pmod{16}, then (*) has no solutions (x,n).


2020 ◽  
Vol 57 (2) ◽  
pp. 200-206
Author(s):  
Elif kizildere ◽  
Maohua le ◽  
Gökhan Soydan

AbstractLet l,m,r be fixed positive integers such that 2| l, 3lm, l > r and 3 | r. In this paper, using the BHV theorem on the existence of primitive divisors of Lehmer numbers, we prove that if min{rlm2 − 1,(l − r)lm2 + 1} > 30, then the equation (rlm2 − 1)x + ((l − r)lm2 + 1)y = (lm)z has only the positive integer solution (x,y,z) = (1,1,2).


2020 ◽  
Vol 16 (08) ◽  
pp. 1701-1708
Author(s):  
Xiao-Hui Yan

For fixed coprime positive integers [Formula: see text], [Formula: see text], [Formula: see text] with [Formula: see text] and [Formula: see text], there is a conjecture that the exponential Diophantine equation [Formula: see text] has only the positive integer solution [Formula: see text] for any positive integer [Formula: see text]. This is the analogue of Jésmanowicz conjecture. In this paper, we consider the equation [Formula: see text], where [Formula: see text] are coprime positive integers, and prove that the equation has no positive integer solution if [Formula: see text] and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document