scholarly journals PRIMES IN ARITHMETIC PROGRESSIONS AND NONPRIMITIVE ROOTS

2019 ◽  
Vol 100 (3) ◽  
pp. 388-394
Author(s):  
PIETER MOREE ◽  
MIN SHA

Let $p$ be a prime. If an integer $g$ generates a subgroup of index $t$ in $(\mathbb{Z}/p\mathbb{Z})^{\ast },$ then we say that $g$ is a $t$-near primitive root modulo $p$. We point out the easy result that each coprime residue class contains a subset of primes $p$ of positive natural density which do not have $g$ as a $t$-near primitive root and we prove a more difficult variant.

Author(s):  
Bo Chen

In this paper, we give an explicit upper bound on [Formula: see text], the least primitive root modulo [Formula: see text]. Since a primitive root modulo [Formula: see text] is not primitive modulo [Formula: see text] if and only if it belongs to the set of integers less than [Formula: see text] which are [Formula: see text]th power residues modulo [Formula: see text], we seek the bounds for [Formula: see text] and [Formula: see text] to find [Formula: see text] which satisfies [Formula: see text], where, [Formula: see text] denotes the number of primitive roots modulo [Formula: see text] not exceeding [Formula: see text], and [Formula: see text] denotes the number of [Formula: see text]th powers modulo [Formula: see text] not exceeding [Formula: see text]. The method we mainly use is to estimate the character sums contained in the expressions of the [Formula: see text] and [Formula: see text] above. Finally, we show that [Formula: see text] for all primes [Formula: see text]. This improves the recent result of Kerr et al.


Sign in / Sign up

Export Citation Format

Share Document