Explicit upper bound on the least primitive root modulo p2

Author(s):  
Bo Chen

In this paper, we give an explicit upper bound on [Formula: see text], the least primitive root modulo [Formula: see text]. Since a primitive root modulo [Formula: see text] is not primitive modulo [Formula: see text] if and only if it belongs to the set of integers less than [Formula: see text] which are [Formula: see text]th power residues modulo [Formula: see text], we seek the bounds for [Formula: see text] and [Formula: see text] to find [Formula: see text] which satisfies [Formula: see text], where, [Formula: see text] denotes the number of primitive roots modulo [Formula: see text] not exceeding [Formula: see text], and [Formula: see text] denotes the number of [Formula: see text]th powers modulo [Formula: see text] not exceeding [Formula: see text]. The method we mainly use is to estimate the character sums contained in the expressions of the [Formula: see text] and [Formula: see text] above. Finally, we show that [Formula: see text] for all primes [Formula: see text]. This improves the recent result of Kerr et al.

2014 ◽  
Vol 90 (3) ◽  
pp. 376-390 ◽  
Author(s):  
MEI-CHU CHANG ◽  
IGOR E. SHPARLINSKI

AbstractWe estimate double sums $$\begin{eqnarray}S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})=\mathop{\sum }\limits_{x\in {\mathcal{I}}}\mathop{\sum }\limits_{{\it\lambda}\in {\mathcal{G}}}{\it\chi}(x+a{\it\lambda}),\quad 1\leq a<p-1,\end{eqnarray}$$ with a multiplicative character ${\it\chi}$ modulo $p$ where ${\mathcal{I}}=\{1,\dots ,H\}$ and ${\mathcal{G}}$ is a subgroup of order $T$ of the multiplicative group of the finite field of $p$ elements. A nontrivial upper bound on $S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})$ can be derived from the Burgess bound if $H\geq p^{1/4+{\it\varepsilon}}$ and from some standard elementary arguments if $T\geq p^{1/2+{\it\varepsilon}}$, where ${\it\varepsilon}>0$ is arbitrary. We obtain a nontrivial estimate in a wider range of parameters $H$ and $T$. We also estimate double sums $$\begin{eqnarray}T_{{\it\chi}}(a,{\mathcal{G}})=\mathop{\sum }\limits_{{\it\lambda},{\it\mu}\in {\mathcal{G}}}{\it\chi}(a+{\it\lambda}+{\it\mu}),\quad 1\leq a<p-1,\end{eqnarray}$$ and give an application to primitive roots modulo $p$ with three nonzero binary digits.


2014 ◽  
Vol 157 (3) ◽  
pp. 489-511 ◽  
Author(s):  
H. W. LENSTRA ◽  
P. STEVENHAGEN ◽  
P. MOREE

AbstractIt follows from the work of Artin and Hooley that, under assumption of the generalised Riemann hypothesis, the density of the set of primes q for which a given non-zero rational number r is a primitive root modulo q can be written as an infinite product ∏p δp of local factors δp reflecting the degree of the splitting field of Xp - r at the primes p, multiplied by a somewhat complicated factor that corrects for the ‘entanglement’ of these splitting fields.We show how the correction factors arising in Artin's original primitive root problem and several of its generalisations can be interpreted as character sums describing the nature of the entanglement. The resulting description in terms of local contributions is so transparent that it greatly facilitates explicit computations, and naturally leads to non-vanishing criteria for the correction factors.The method not only applies in the setting of Galois representations of the multiplicative group underlying Artin's conjecture, but also in the GL2-setting arising for elliptic curves. As an application, we compute the density of the set of primes of cyclic reduction for Serre curves.


2016 ◽  
Vol 160 (3) ◽  
pp. 477-494 ◽  
Author(s):  
J. CILLERUELO ◽  
M. Z. GARAEV

AbstractIn this paper we obtain new upper bound estimates for the number of solutions of the congruence $$\begin{equation} x\equiv y r\pmod p;\quad x,y\in \mathbb{N},\quad x,y\le H,\quad r\in \mathcal{U}, \end{equation}$$ for certain ranges of H and |${\mathcal U}$|, where ${\mathcal U}$ is a subset of the field of residue classes modulo p having small multiplicative doubling. We then use these estimates to show that the number of solutions of the congruence $$\begin{equation} x^n\equiv \lambda\pmod p; \quad x\in \mathbb{N}, \quad L<x<L+p/n, \end{equation}$$ is at most $p^{\frac{1}{3}-c}$ uniformly over positive integers n, λ and L, for some absolute constant c > 0. This implies, in particular, that if f(x) ∈ $\mathbb{Z}$[x] is a fixed polynomial without multiple roots in $\mathbb{C}$, then the congruence xf(x) ≡ 1 (mod p), x ∈ $\mathbb{N}$, x ⩽ p, has at most $p^{\frac{1}{3}-c}$ solutions as p → ∞, improving some recent results of Kurlberg, Luca and Shparlinski and of Balog, Broughan and Shparlinski. We use our results to show that almost all the residue classes modulo p can be represented in the form xgy (mod p) with positive integers x < p5/8+ϵ and y < p3/8. Here g denotes a primitive root modulo p. We also prove that almost all the residue classes modulo p can be represented in the form xyzgt (mod p) with positive integers x, y, z, t < p1/4+ϵ.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Sankar Sitaraman

E. Artin conjectured that any integer $a > 1$ which is not a perfect square is a primitive root modulo $p$ for infinitely many primes $ p.$ Let $f_a(p)$ be the multiplicative order of the non-square integer $a$ modulo the prime $p.$ M. R. Murty and S. Srinivasan \cite{Murty-Srinivasan} showed that if $\displaystyle \sum_{p < x} \frac 1 {f_a(p)} = O(x^{1/4})$ then Artin's conjecture is true for $a.$ We relate the Murty-Srinivasan condition to sums involving the cyclotomic periods from the subfields of $\mathbb Q(e^{2\pi i /p})$ corresponding to the subgroups $<a> \subseteq \mathbb F_p^*.$


2018 ◽  
Vol 14 (04) ◽  
pp. 1013-1021 ◽  
Author(s):  
Marc Munsch ◽  
Tim Trudgian

We use character sum estimates to give some bounds on the least square-full primitive root modulo a prime. In particular, we show that there is a square-full primitive root mod [Formula: see text] less than [Formula: see text].


2008 ◽  
Vol 8 (1&2) ◽  
pp. 147-180
Author(s):  
P. Wocjan ◽  
J. Yard

We analyze relationships between quantum computation and a family of generalizations of the Jones polynomial. Extending recent work by Aharonov et al., we give efficient quantum circuits for implementing the unitary Jones-Wenzl representations of the braid group. We use these to provide new quantum algorithms for approximately evaluating a family of specializations of the HOMFLYPT two-variable polynomial of trace closures of braids. We also give algorithms for approximating the Jones polynomial of a general class of closures of braids at roots of unity. Next we provide a self-contained proof of a result of Freedman et al.\ that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. Our proof encodes two-qubit unitaries into the rectangular representation of the eight-strand braid group. We then give QCMA-complete and PSPACE-complete problems which are based on braids. We conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a \#P-hard problem, while learning its most significant bit is PP-hard, circumventing the usual route through the Tutte polynomial and graph coloring.


2019 ◽  
Vol 56 (4) ◽  
pp. 1033-1043 ◽  
Author(s):  
Félix Belzunce ◽  
Carolina Martínez-Riquelme

AbstractAn upper bound for the hazard rate function of a convolution of not necessarily independent random lifetimes is provided, which generalizes a recent result established for independent random lifetimes. Similar results are considered for the reversed hazard rate function. Applications to parametric and semiparametric models are also given.


1997 ◽  
Vol 56 (3) ◽  
pp. 435-454 ◽  
Author(s):  
P. D. T. A. Elliott ◽  
Leo Murata

Sign in / Sign up

Export Citation Format

Share Document