scholarly journals A Note on the Kawada-into Theorem

1963 ◽  
Vol 13 (4) ◽  
pp. 295-296 ◽  
Author(s):  
John S. Pym

If µ is a bounded regular Borel measure on a locally compact group G, and L1(G) denotes the class of complex-valued functions which are integrable with respect to the left Haar measure m of G, then, for each f∈L1(G),defines almost everywhere (a.e.) with respect to m a function μ*f which is again in L1(G). The measure μ will be called isotone on G mapping f→μ*f is isotone, i.e. f≧0 a.e. (m) if and only if μ*f≧0 a.e. (m).

1970 ◽  
Vol 13 (4) ◽  
pp. 497-499 ◽  
Author(s):  
Paul Milnes

Greenleaf states the following conjecture in [1, p. 69]. Let G be a (connected, separable) amenable locally compact group with left Haar measure, μ, and let U be a compact symmetric neighbourhood of the unit. Then the sets, {Um}, have the following property: given ɛ > 0 and compact K ⊂ G, ∃ m0 = m0(ɛ, K) such that


1965 ◽  
Vol 17 ◽  
pp. 839-846 ◽  
Author(s):  
R. E. Edwards

Throughout this paper the term "space" will mean "Hausdorff locally compact space" and the term '"group" will mean "Hausdorff locally compact group." If G is a group and 1 ≤ p < ∞, Lp(G) denotes the usual Lebesgue space formed relative to left Haar measure on G. It is well known that L1(G) is an algebra under convolution, and that the same is true of Lp(G) whenever G is compact. We introduce also the space Cc(G) of complex-valued continuous functions f on G for each of which the support (supp f), is compact. The "natural" topology of CC(G) is obtained by regarding CC(G) as the inductive limit of its subspaces


1977 ◽  
Vol 29 (3) ◽  
pp. 626-630 ◽  
Author(s):  
Daniel M. Oberlin

For a locally compact group G, let LP(G) be the usual Lebesgue space with respect to left Haar measure m on G. For x ϵ G define the left and right translation operators Lx and Rx by Lx f(y) = f(xy), Rx f(y) = f(yx)(f ϵ Lp(G),y ϵ G). The purpose of this paper is to prove the following theorem.


1958 ◽  
Vol 11 (2) ◽  
pp. 71-77 ◽  
Author(s):  
J. H. Williamson

Let G be a locally compact topological group, with left-invariant Haar measure. If L1(G) is the usual class of complex functions which are integrable with respect to this measure, and μ is any bounded Borel measure on G, then the convolution-product μ⋆f, defined for any f in Li byis again in L1, and


1991 ◽  
Vol 110 (1) ◽  
pp. 137-142
Author(s):  
Mohammed B. Bekka

Let G be a locally compact group, and let P(G) be the convex set of all continuous, positive definite functions ø on G normalized by ø(e) = 1, where e denotes the group unit of G. For ø∈P(G) the spectrum spø of ø is defined as the set of all indecomposable ψ∈P(G) which are limits, for the topology of uniform convergence on compact subsets of G, of functions of the form(see [5], p. 43). Denoting by πø the cyclic unitary representation of G associated with ø, it is clear that sp ø consists of all ψ∈P(G) for which πψ is irreducible and weakly contained in πø (see [3], chapter 18).


1974 ◽  
Vol 18 (2) ◽  
pp. 236-238 ◽  
Author(s):  
Edwin Hewitt ◽  
Karl Stromberg

In a recent issue of this Journal, Pu [3] has given an interesting construction of a nonmeasurable subset A of R such that for all intervals I in R. [Throughout this note, the symbol λ denotes Lebesgue outer measure on R or Haar outer measure on a general locally compact group.] This solves a problem stated in [2], p. 295, Exercise (18.30).


2015 ◽  
Vol 116 (2) ◽  
pp. 250 ◽  
Author(s):  
Yulia Kuznetsova

We present a simple and intuitive framework for duality of locally compacts groups, which is not based on the Haar measure. This is a map, functorial on a non-degenerate subcategory, on the category of coinvolutive Hopf $C^*$-algebras, and a similar map on the category of coinvolutive Hopf-von Neumann algebras. In the $C^*$-version, this functor sends $C_0(G)$ to $C^*(G)$ and vice versa, for every locally compact group $G$. As opposed to preceding approaches, there is an explicit description of commutative and co-commutative algebras in the range of this map (without assumption of being isomorphic to their bidual): these algebras have the form $C_0(G)$ or $C^*(G)$ respectively, where $G$ is a locally compact group. The von Neumann version of the functor puts into duality, in the group case, the enveloping von Neumann algebras of the algebras above: $C_0(G)^{**}$ and $C^*(G)^{**}$.


1964 ◽  
Vol 16 ◽  
pp. 275-285 ◽  
Author(s):  
R. E. Edwards

Throughout this paper X denotes a fixed Hausdorff locally compact group with left Haar measure dx. Various spaces of functions and measures on X will recur in the discussion, so we name and describe them forthwith. All functions and measures on X will be scalarvalued, though it matters little whether the scalars are real or complex.C = C(X) is the space of all continuous functions on X, Cc = Cc(X) its subspace formed of functions with compact supports. M = M(X) denotes the space of all (Radon) measures on X, Mc = MC(X) the subspace formed of those measures with compact supports. In general we denote the support of a function or a measure ξ by [ξ].


1983 ◽  
Vol 93 (3) ◽  
pp. 511-518
Author(s):  
C. Karanikas

Let G be a metrizable non-discrete locally compact group. Let M(G) be the convolution measure algebra of G. We shall denote by Lx and Rx, x β G, the left and the right translation operation on M(G), respectively. A measure μ β M(G) has strongly independent powers or μ is a s.i.p. measure, if, for x β G and n, m β N,whenever n ≠ m or x ≠ e, where e is the identity of G. If a measure μ satisfies (1) for x = e and n + m, we say that μ has independent powers, or μ is an i.p. measure. Notice that the powers μn and μm of μ are convolution powers.


Sign in / Sign up

Export Citation Format

Share Document