complex functions
Recently Published Documents


TOTAL DOCUMENTS

755
(FIVE YEARS 199)

H-INDEX

64
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Yangming Zhang ◽  
Linguang Zhou ◽  
Jialin Xia ◽  
Ce Dong ◽  
Xiaozhou Luo

The commensal microbiome is essential for human health and is involved in many processes in the human body, such as the metabolism process and immune system activation. Emerging evidence implies that specific changes in the microbiome participate in the development of various diseases, including diabetes, liver diseases, tumors, and pathogen infections. Thus, intervention on the microbiome is becoming a novel and effective method to treat such diseases. Synthetic biology empowers researchers to create strains with unique and complex functions, making the use of engineered microbes for clinical applications attainable. The aim of this review is to summarize recent advances about the roles of the microbiome in certain diseases and the underlying mechanisms, as well as the use of engineered microbes in the prevention, detection, and treatment of various diseases.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yusheng Guo ◽  
Guohui Wu ◽  
Junrong Yi ◽  
Qin Yang ◽  
Wengong Jiang ◽  
...  

There are significant gender differences in the incidence and mortality of hepatocellular carcinoma (HCC). Compared with men, the incidence and mortality of HCC in women are relatively low. The estrogen signaling pathway, composed of estrogen and estrogen receptors, has been postulated to have a protective effect on the occurrence and development of HCC. There have been multiple studies that have supported anti-HCC effects of the estrogen signaling pathways, including direct and indirect pathways such as genomic pathways, rapid transduction pathways, non-coding RNA, tumor microenvironment, estrogen metabolites, and inhibition of hepatitis infection and replication. Based on the evidence of an anti-HCC effect of the estrogen signaling pathway, a number of strategies have been investigated to determine the potential therapeutic effect. These have included estrogen replacement therapy, targeting the estrogen receptor, key molecules, inflammatory mediators, and regulatory pathways of the estrogen signaling pathway. In this review, we have systematically summarized the latest developments in the complex functions and molecular mechanisms of the estrogen signaling pathway in liver cancer. Furthermore, we have highlighted the potential targets of treatment strategies based on the estrogen signaling pathway in the treatment of liver cancer and the principal obstacles currently encountered for future investigation.


2022 ◽  
Vol 23 (2) ◽  
pp. 627
Author(s):  
Yajie Zhong ◽  
Xuan Zhang ◽  
Waipo Chong

Interleukin (IL)-24 belongs to the IL-10 family and signals through two receptor complexes, i.e., IL-20RA/IL-20RB and IL-20RB/IL22RA1. It is a multifunctional cytokine that can regulate immune response, tissue homeostasis, host defense, and oncogenesis. Elevation of IL-24 is associated with chronic inflammation and autoimmune diseases, such as psoriasis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). Its pathogenicity has been confirmed by inducing inflammation and immune cell infiltration for tissue damage. However, recent studies also revealed their suppressive functions in regulating immune cells, including T cells, B cells, natural killer (NK) cells, and macrophages. The tolerogenic properties of IL-24 were reported in various animal models of autoimmune diseases, suggesting the complex functions of IL-24 in regulating autoimmunity. In this review, we discuss the immunoregulatory functions of IL-24 and its roles in autoimmune diseases.


2021 ◽  
Author(s):  
Dongzhi Lin ◽  
Licheng Kang ◽  
Wenhao Zhou ◽  
Yulu Wang ◽  
Yu Chen ◽  
...  

Abstract Transcriptionally active chromosome (TAC) is a component of protein-DNA complexes with RNA polymerase activity found in chloroplasts. Although TAC in Arabidopsis thaliana has been extensively investigated, how the rice (Oryza sativa L.) TAC complex functions remains largely unknown. We report the characterization of the mutant thermosensitive chlorophyll-deficient7 (tcd7) and the cloning of TCD7. tcd7 mutant seedlings displayed an albino phenotype specifically at low temperatures and before the four-leaf stage. We identified TCD7 by map-based cloning followed by transgenic rescue and genome editing tests, showing that TCD7 encodes the putative TAC component FRUCTOKINASE-LIKE 2 (OsFLN2). TCD7 transcripts were highly abundant in green tissues, and the protein localized to chloroplasts. In agreement with the albino phenotype, transcript levels of genes controlling chloroplast development and the establishment of photosynthetic capacity were severely reduced in tcd7 seedlings at low temperatures, but were expressed as in the wild type at high temperatures, implying that TCD7 regulates the PEP pathway and chloroplast development. Moreover, TCD7 interacted with the thioredoxin OsTRXz to form an OsTRXz-TCD7 regulatory module, which might regulate plastid transcription under cold stress. Our results demonstrate that the nucleus-encoded TAC protein TCD7 protects chloroplast development from cold stress via a TRXz-FLN regulatory module.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaoqian Ma

In order to improve the effect of modern music teaching, this paper combines AI technology to construct a multimedia-assisted music teaching system, combines music teaching data processing requirements to improve the algorithm, proposes appropriate music data filtering algorithms, and performs appropriate data compression processing. Moreover, the functional structure analysis of the intelligent music teaching system is carried out with the support of the improved algorithm, and the three-tier framework technology that is currently more widely used is used in the music multimedia teaching system. Finally, in order to realize the complex functions of the system, the system adopts a layered approach. From the experimental research results, it can be seen that the multimedia-assisted music teaching system based on AI technology proposed in this paper can effectively improve the effect of modern music teaching.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Binesh Thankappan

A stable and holomorphic implementation of complex functions in ℂ plane making use of a unit circle-based transform is presented in this paper. In this method, any complex number or function can be represented as an infinite series sum of progressive products of a base complex unit and its conjugate only, where both are defined inside the unit circle. With each term in the infinite progression lying inside the unit circle, the sum ultimately converges to the complex function under consideration. Since infinitely large number of terms are present in the progression, the first element of which may be deemed as the base unit of the given complex number, it is addressed as complex baselet so that the complex number or function is termed as the complex baselet transform. Using this approach, various fundamental operations applied on the original complex number in ℂ are mapped to equivalent operations on the complex baselet inside the unit circle, and results are presented. This implementation has unique properties due to the fact that the constituent elements are all lying inside the unit circle. Out of numerous applications, two cases are presented: one of a stable implementation of an otherwise unstable system and the second case of functions not satisfying Cauchy–Riemann equations thereby not holomorphic in ℂ plane, which are made complex differentiable using the proposed transform-based implementation. Various lemmas and theorems related to this approach are also included with proofs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shounak Jagdale ◽  
Uma Rao ◽  
Ashok P. Giri

Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell cycle, and metabolism to modify healthy cells into giant cells (GCs) – RKN feeding sites. RKNs secrete various effector molecules which suppress the plant defence and tamper with plant cellular and molecular biology. These effectors originate mainly from sub-ventral and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently formation and maintenance of the GCs during the parasitism. In the past two decades, advanced genomic and post-genomic techniques identified many effectors, out of which only a few are well characterized. In this review, we provide molecular and functional details of RKN effectors secreted during parasitism. We list the known effectors and pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive insight into RKN effectors concerning their implications on overall plant and nematode biology. Since effectors are the primary and prime molecular weapons of RKNs to invade the plant, it is imperative to understand their intriguing and complex functions to design counter-strategies against RKN infection.


2021 ◽  
pp. 1-38
Author(s):  
Shi Gu ◽  
Panagiotis Fotiadis ◽  
Linden Parkes ◽  
Cedric H. Xia ◽  
Ruben C. Gur ◽  
...  

Abstract Precisely how the anatomical structure of the brain supports a wide range of complex functions remains a question of marked importance in both basic and clinical neuroscience. Progress has been hampered by the lack of theoretical frameworks explaining how a structural network of relatively rigid inter-areal connections can produce a diverse repertoire of functional neural dynamics. Here, we address this gap by positing that the brain’s structural network architecture determines the set of accessible functional connectivity patterns according to predictions of network control theory. In a large developmental cohort of 823 youths aged 8 to 23 years, we found that the flexibility of a brain region’s functional connectivity was positively correlated with the proportion of its structural links extending to different cognitive systems. Notably, this relationship was mediated by nodes’ boundary controllability, suggesting that a region’s strategic location on the boundaries of modules may underpin the capacity to integrate information across different cognitive processes. Broadly, our study provides a mechanistic framework that illustrates how temporal flexibility observed in functional networks may be mediated by the controllability of the underlying structural connectivity.


Author(s):  
Andrew Leung

This paper considers the solution of the equations for ruin probabilities in infinite continuous time. Using the Fourier Transform and certain results from the theory of complex functions, these solutions are obtained as com- plex integrals in a form which may be evaluated numerically by means of the inverse Fourier Transform. In addition the relationship between the re- sults obtained for the continuous time cases, and those in the literature, are compared. Closed form ruin probabilities for the heavy tailed distributions: mixed exponential; Gamma (including Erlang); Lognormal; Weillbull; and Pareto, are derived as a result (or computed to any degree of accuracy, and without the use of simulations).


2021 ◽  
Vol 22 (23) ◽  
pp. 13083
Author(s):  
Uwe Schlattner

The family of NME proteins represents a quite complex group of multifunctional enzymes [...]


Sign in / Sign up

Export Citation Format

Share Document