Ground States of some Fractional Schrödinger Equations on ℝN

2014 ◽  
Vol 58 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Xiaojun Chang

AbstractIn this paper, we study a time-independent fractional Schrödinger equation of the form (−Δ)su + V(x)u = g(u) in ℝN, where N ≥, s ∈ (0,1) and (−Δ)s is the fractional Laplacian. By variational methods, we prove the existence of ground state solutions when V is unbounded and the nonlinearity g is subcritical and satisfies the following geometry condition:

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Ma ◽  
Zhenxiong Li

Abstract We consider ground states of the nonlinear fractional Schrödinger equation with potentials ( - Δ ) s ⁢ u + V ⁢ ( x ) ⁢ u = f ⁢ ( x , u ) , s ∈ ( 0 , 1 ) , (-\Delta)^{s}u+V(x)u=f(x,u),\quad s\in(0,1), on the whole space ℝ N {\mathbb{R}^{N}} , where V is a periodic non-negative nontrivial function on ℝ N {\mathbb{R}^{N}} and the nonlinear term f has some proper growth on u. Under uniform bounded assumptions about V, we can show the existence of a ground state. We extend the result of Li, Wang, and Zeng to the fractional case.


2021 ◽  
pp. 1-25
Author(s):  
Zhuo Chen ◽  
Chao Ji

In this paper, by using variational methods, we study the existence and concentration of ground state solutions for the following fractional Schrödinger equation ( − Δ ) α u + V ( x ) u = A ( ϵ x ) f ( u ) , x ∈ R N , where α ∈ ( 0 , 1 ), ϵ is a positive parameter, N > 2 α, ( − Δ ) α stands for the fractional Laplacian, f is a continuous function with subcritical growth, V ∈ C ( R N , R ) is a Z N -periodic function and A ∈ C ( R N , R ) satisfies some appropriate assumptions.


Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


2019 ◽  
Vol 109 (2) ◽  
pp. 193-216 ◽  
Author(s):  
J. C. DE ALBUQUERQUE ◽  
JOÃO MARCOS DO Ó ◽  
EDCARLOS D. SILVA

We study the existence of positive ground state solutions for the following class of $(p,q)$-Laplacian coupled systems $$\begin{eqnarray}\left\{\begin{array}{@{}lr@{}}-\unicode[STIX]{x1D6E5}_{p}u+a(x)|u|^{p-2}u=f(u)+\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D706}(x)|u|^{\unicode[STIX]{x1D6FC}-2}u|v|^{\unicode[STIX]{x1D6FD}}, & x\in \mathbb{R}^{N},\\ -\unicode[STIX]{x1D6E5}_{q}v+b(x)|v|^{q-2}v=g(v)+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D706}(x)|v|^{\unicode[STIX]{x1D6FD}-2}v|u|^{\unicode[STIX]{x1D6FC}}, & x\in \mathbb{R}^{N},\end{array}\right.\end{eqnarray}$$ where $1<p\leq q<N$. Here the coefficient $\unicode[STIX]{x1D706}(x)$ of the coupling term is related to the potentials by the condition $|\unicode[STIX]{x1D706}(x)|\leq \unicode[STIX]{x1D6FF}a(x)^{\unicode[STIX]{x1D6FC}/p}b(x)^{\unicode[STIX]{x1D6FD}/q}$, where $\unicode[STIX]{x1D6FF}\in (0,1)$ and $\unicode[STIX]{x1D6FC}/p+\unicode[STIX]{x1D6FD}/q=1$. Using a variational approach based on minimization over the Nehari manifold, we establish the existence of positive ground state solutions for a large class of nonlinear terms and potentials.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
V. B. L. Chaurasia ◽  
Devendra Kumar

We obtain the solution of a unified fractional Schrödinger equation. The solution is derived by the application of the Laplace and Fourier transforms in closed form in terms of the Mittag-Leffler function. The result obtained here is quite general in nature and capable of yielding a very large number of results (new and known) hitherto scattered in the literature. Most of results obtained are in a form suitable for numerical computation.


2015 ◽  
Vol 18 (2) ◽  
pp. 321-350 ◽  
Author(s):  
Siwei Duo ◽  
Yanzhi Zhang

AbstractIn this paper, we numerically study the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Due to the nonlocality of the fractional Laplacian, it is challenging to find the eigenvalues and eigenfunctions of the fractional Schrödinger equation analytically. We first introduce a normalized fractional gradient flow and then discretize it by a quadrature rule method in space and the semi-implicit Euler method in time. Our numerical results suggest that the eigenfunctions of the fractional Schrödinger equation in an infinite potential well differ from those of the standard (non-fractional) Schrödinger equation. We find that the strong nonlocal interactions represented by the fractional Laplacian can lead to a large scattering of particles inside of the potential well. Compared to the ground states, the scattering of particles in the first excited states is larger. Furthermore, boundary layers emerge in the ground states and additionally inner layers exist in the first excited states of the fractional nonlinear Schrödinger equation. Our simulated eigenvalues are consistent with the lower and upper bound estimates in the literature.


Sign in / Sign up

Export Citation Format

Share Document