local transition
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Antara Sengupta ◽  
Sreeya Ghosh ◽  
Pabitra Pal Choudhury

AbstractVariation in the nucleotides of a codon may cause variations in the evolutionary patterns of a DNA or amino acid sequence. To address the capability of each position of a codon to have non-synonymous mutations, the concept of degree of mutation has been introduced. The degree of mutation of a particular position of codon defines the number of non-synonymous mutations occurring for the substitution of nucleotides at each position of a codon, when other two positions of that codon remain unaltered. A Cellular Automaton (CA), is used as a tool to model the mutations of any one of the four DNA bases A, C, T and G at a time where the DNA bases correspond to the states of the CA cells. Point mutation (substitution type) of a codon which characterizes changes in the amino acids, have been associated with local transition rules of a CA. Though there can be transitions of a 4-state CA with 3-neighbourhood cells, here it has been possible to represent all possible point mutations of a codon in terms of combinations of 16 local transition functions of the CA. Further these rules are divided into 4 classes of equivalence. Also, according to the nature of mutations, the 16 local CA rules of substitutions are classified into 3 sets namely, ‘No Mutation’, ‘Transition’ and ‘Transversion’. The experiment has been carried out with three sets of single nucleotide variations(SNVs) of three different viruses but the symptoms of the diseases caused by them are to some extent similar to each other. They are SARS-CoV-1, SARS-CoV-2 and H1N1 Type A viruses. The aim is to understand the impact of nucleotide substitutions at different positions of a codon with respect to a particular disease phenotype.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Hernández-Santamaría ◽  
Alberto Saldaña

Abstract We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent problem ( - Δ ) s ⁢ u s = | u s | 2 s ⋆ - 2 ⁢ u s , u s ∈ D 0 s ⁢ ( Ω ) ,  2 s ⋆ := 2 ⁢ N N - 2 ⁢ s , (-\Delta)^{s}u_{s}=\lvert u_{s}\rvert^{2_{s}^{\star}-2}u_{s},\quad u_{s}\in D^% {s}_{0}(\Omega),\,2^{\star}_{s}:=\frac{2N}{N-2s}, where s is any positive number, Ω is either ℝ N {\mathbb{R}^{N}} or a smooth symmetric bounded domain, and D 0 s ⁢ ( Ω ) {D^{s}_{0}(\Omega)} is the homogeneous Sobolev space. Depending on the kind of symmetry considered, solutions can be sign-changing. We show that, up to a subsequence, a l.e.s.s. u s {u_{s}} converges to a l.e.s.s. u t {u_{t}} as s goes to any t > 0 {t>0} . In bounded domains, this convergence can be characterized in terms of an homogeneous fractional norm of order t - ε {t-\varepsilon} . A similar characterization is no longer possible in unbounded domains due to scaling invariance and an incompatibility with the functional spaces; to circumvent these difficulties, we use a suitable rescaling and characterize the convergence via cut-off functions. If t is an integer, then these results describe in a precise way the nonlocal-to-local transition. Finally, we also include a nonexistence result of nontrivial nonnegative solutions in a ball for any s > 1 {s>1} .


2021 ◽  
pp. 2882-2890
Author(s):  
Muhammad Mominur Rahman ◽  
Scott McGuigan ◽  
Shaofeng Li ◽  
Lina Gao ◽  
Dong Hou ◽  
...  

2021 ◽  
pp. 003435522199354
Author(s):  
Michele A. Schutz ◽  
Jessica M. Awsumb ◽  
Erik W. Carter ◽  
Elise D. McMillan

Parents have long been recognized as critical supports and partners to youth with disabilities preparing for the world of work. We collected survey responses from 253 parents of transition-age youth with disabilities regarding their views on practices related to pre-employment transition services (Pre-ETS), the overall employment preparation of their children, potential barriers to future employment, and their knowledge of local transition resources. Parents reported that their children would benefit from an array of employment-focused transition practices. However, they were quite mixed in their views of prevailing barriers and current employment preparation. Moreover, a large majority of parents said they were unfamiliar with a range of transition-related resources available in their communities. In some areas, the views of parents differed based on the type of community in which they lived (i.e., rural vs. non-rural) or the nature of their child’s disability (i.e., intellectual and developmental disabilities vs. other disabilities). We offer recommendations for supporting families as they prepare their children with disabilities for life after high school.


The chapter describes the models and paradigms of asynchronous cellular automata with several active cells. Variants of active states are considered in which an asynchronous cellular automaton functions without loss of active cells. Structures that allow the coincidence of several active states in one cell of a cellular automaton are presented. The cell scheme is complicated by adding several active triggers and state control schemes for active triggers. The VHDL models of such cells were developed. Attention is paid to the choice of local state functions and local transition functions. The local transition functions are different for each active state. This allows you to transmit active signals in different directions. At each time step, two cells can change their information state according to the local state function. Asynchronous cellular automata have a long lifecycle.


The chapter describes the basic models and paradigms for constructing asynchronous cellular automata with one active cell. The rules for performing local state functions and local transition functions are considered. The basic cell structures during the transmission of active signals for various local transmission functions are presented. The option is considered when the cell itself selects among the cells in the neighborhood of the cell, a cell that will become active in the next time step, and also the structure with active cells under control is considered. The analysis of cycles that occur in cellular automata with one active cell is carried out, and approaches to eliminating cycles are formulated. Cell structures are constructed and recommendations for their modeling in modern CAD are formulated.


Sign in / Sign up

Export Citation Format

Share Document