scholarly journals On generalization of decomposability

1981 ◽  
Vol 22 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Ridgley Lange

Let X be a complex Banach space and let T be a bounded linear operator on X. Then T is decomposable if for every finite open cover of σ(T) there are invariant subspaces Yi(i= 1, 2, …, n) such that(An invariant subspace Y is spectral maximal [for T] if it contains every invariant subspace Z for which σ(T|Z) ⊂ σ(T|Y).).

1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


2020 ◽  
Vol 65 (4) ◽  
pp. 585-597
Author(s):  
Chung-Cheng Kuo

"We show that $\tA+\tB$ is a closed subgenerator of a local $\tC$-cosine function $\tT(\cdot)$ on a complex Banach space $\tX$ defined by $$\tT(t)x=\sum\limits_{n=0}^\infty \tB^n\int_0^tj_{n-1}(s)j_n(t-s)\tC(|t-2s|)xds$$ for all $x\in\tX$ and $0\leq t<T_0$, if $\tA$ is a closed subgenerator of a local $\tC$-cosine function $\tC(\cdot)$ on $\tX$ and one of the following cases holds: $(i)$ $\tC(\cdot)$ is exponentially bounded, and $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ so that $\tB\tC=\tC\tB$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$; $(ii)$ $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ which commutes with $\tC(\cdot)$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$; $(iii)$ $\tB$ is a bounded linear operator on $\tX$ which commutes with $\tC(\cdot)$ on $\tX$. Here $j_n(t)=\frac{t^n}{n!}$ for all $t\in\Bbb R$, and $$\int_0^tj_{-1}(s)j_0(t-s)\tC(|t-2s|)xds=\tC(t)x$$ for all $x\in\tX$ and $0\leq t<T_0$."


2012 ◽  
Vol 34 (1) ◽  
pp. 132-152 ◽  
Author(s):  
SOPHIE GRIVAUX

AbstractWe study non-recurrence sets for weakly mixing dynamical systems by using linear dynamical systems. These are systems consisting of a bounded linear operator acting on a separable complex Banach space$X$, which becomes a probability space when endowed with a non-degenerate Gaussian measure. We generalize some recent results of Bergelson, del Junco, Lemańczyk and Rosenblatt, and show in particular that sets$\{n_{k}\}$such that$n_{k+1}/n_{k}\to +\infty $, or such that$n_{k}$divides$n_{k+1}$for each$k\ge 0$, are non-recurrence sets for weakly mixing linear dynamical systems. We also give examples, for each$r\ge 1$, of$r$-Bohr sets which are non-recurrence sets for some weakly mixing systems.


1970 ◽  
Vol 13 (4) ◽  
pp. 469-473
Author(s):  
C-S Lin

Let T—c be a Fredholm operator, where T is a bounded linear operator on a complex Banach space and c is a scalar, the set of all such scalars is called the Φ-set of T [2] and was studied by many authors. In this connection, the purpose of the present paper is to investigate some classes Φ(V) of all such operators for any subset V of the complex plane.Let X be a Banach space over the field C of complex numbers with dim Z = ∞, unless otherwise stated, B(X) the Banach algebra of all bounded linear operators and K(X) the closed two-sided ideal of all compact operators on X.


Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3801-3813
Author(s):  
Caixing Gu ◽  
Heidi Keas ◽  
Robert Lee

The concept of a left n-inverse of a bounded linear operator on a complex Banach space was introduced recently. Previously, there have been results on products and tensor products of left n-inverses, and the representation of left n-inverses as the sum of left inverses and nilpotent operators was being discussed. In this paper, we give a spectral characterization of the left n-inverses of a finite (square) matrix. We also show that a left n-inverse of a matrix T is the sum of the inverse of T and two nilpotent matrices.


1986 ◽  
Vol 38 (1) ◽  
pp. 65-86 ◽  
Author(s):  
N. J. Kalton

Let X be a quasi-Banach space whose dual X* separates the points of X. Then X* is a Banach space under the normFrom X we can construct the Banach envelope Xc of X by defining for x ∊ X, the normThen Xc is the completion of (X, ‖ ‖c). Alternatively ‖ ‖c is the Minkowski functional of the convex hull of the unit ball. Xc has the property that any bounded linear operator L:X → Z into a Banach space extends with preservation of norm to an operator .


1987 ◽  
Vol 39 (5) ◽  
pp. 1223-1234 ◽  
Author(s):  
I. Klemes

Let as usual T = R/2πZ be the circle, and H1 the subspace of L1(T) of all f such that for all integers n < 0. The normrestricted to H1, makes it a Banach space. By a multiplier of H1 we mean a bounded linear operator m:H1 → H1 such that there is a sequence in C with


Sign in / Sign up

Export Citation Format

Share Document