cosine function
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 29)

H-INDEX

11
(FIVE YEARS 2)

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 308
Author(s):  
Yogesh J. Bagul ◽  
Ramkrishna M. Dhaigude ◽  
Marko Kostić ◽  
Christophe Chesneau

Recent advances in mathematical inequalities suggest that bounds of polynomial-exponential-type are appropriate for evaluating key trigonometric functions. In this paper, we innovate in this sense by establishing new and sharp bounds of the form (1−αx2)eβx2 for the trigonometric sinc and cosine functions. Our main result for the sinc function is a double inequality holding on the interval (0, π), while our main result for the cosine function is a double inequality holding on the interval (0, π/2). Comparable sharp results for hyperbolic functions are also obtained. The proofs are based on series expansions, inequalities on the Bernoulli numbers, and the monotone form of the l’Hospital rule. Some comparable bounds of the literature are improved. Examples of application via integral techniques are given.


2021 ◽  
Author(s):  
Feng Qi

Abstract In the paper, by means of the Faa di Bruno formula, with the help of explicit formulas for special values of the Bell polynomials of the second kind with respect to a specific sequence, and by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author establishes Maclaurin's series expansions for real powers of the inverse cosine function and the inverse hyperbolic cosine function. By applying different series expansions for the square of the inverse cosine function, the author not only finds infinite series representations of the circular constant Pi and its square, but also derives two combinatorial identities involving central binomial coefficients.


2021 ◽  
Vol 66 (3) ◽  
pp. 575-589
Author(s):  
Chung-Cheng Kuo ◽  
Nai-Sher Yeh

"We establish some left and right multiplicative perturbations of a local C-cosine function C(.) on a complex Banach space X with non-densely defined generator, which can be applied to obtain some new additive perturbation results concerning C(.)."


2021 ◽  
Vol 45 (4) ◽  
pp. 497-505
Author(s):  
A.A. Kovalev

In optical data transmission with using vortex laser beams, data can be encoded by the topological charge, which is theoretically unlimited. However, the topological charge of a single separate vortex (screw dislocation) is limited by possibilities of its generating. Therefore, we investigate here three examples of multivortex Gaussian light fields (two beams are form-invariant and one beam is astigmatic) with an unbounded (countable) set of screw dislocations. As a result, such fields have an infinite topological charge. The first beam has the complex amplitude of the Gaussian beam, but multiplied by the cosine function with a squared vortex argument. Phase singularity points of such a beam reside in the waist plane on the Cartesian axes and their density grows with increasing distance from the optical axis. The transverse intensity distribution of such a beam has a shape of a four-pointed star. All the optical vortices in this beam has the same topological charge of +1. The second beam also has the complex amplitude of the Gaussian beam, multiplied by the vortex-argument cosine function, but the cosine is raised to an arbitrary power. This beam has a countable number of the optical vortices, which reside in the waist plane uniformly on one Cartesian axis and the topological charge of each vortex equals to power, to which the cosine function is raised. The transverse intensity distribution of such beam consists of two light spots residing on a straight line, orthogonal to a straight line with the optical vortices. Finally, the third beam is similar to the first one in many properties, but it is generated with a tilted cylindrical lens from a 1D parabolic-argument cosine grating.


2021 ◽  
Vol 45 (4) ◽  
pp. 497-505
Author(s):  
A.A. Kovalev

In optical data transmission with using vortex laser beams, data can be encoded by the topological charge, which is theoretically unlimited. However, the topological charge of a single separate vortex (screw dislocation) is limited by possibilities of its generating. Therefore, we investigate here three examples of multivortex Gaussian light fields (two beams are form-invariant and one beam is astigmatic) with an unbounded (countable) set of screw dislocations. As a result, such fields have an infinite topological charge. The first beam has the complex amplitude of the Gaussian beam, but multiplied by the cosine function with a squared vortex argument. Phase singularity points of such a beam reside in the waist plane on the Cartesian axes and their density grows with increasing distance from the optical axis. The transverse intensity distribution of such a beam has a shape of a four-pointed star. All the optical vortices in this beam has the same topological charge of +1. The second beam also has the complex amplitude of the Gaussian beam, multiplied by the vortex-argument cosine function, but the cosine is raised to an arbitrary power. This beam has a countable number of the optical vortices, which reside in the waist plane uniformly on one Cartesian axis and the topological charge of each vortex equals to power, to which the cosine function is raised. The transverse intensity distribution of such beam consists of two light spots residing on a straight line, orthogonal to a straight line with the optical vortices. Finally, the third beam is similar to the first one in many properties, but it is generated with a tilted cylindrical lens from a 1D parabolic-argument cosine grating.


2021 ◽  
Vol 13 (7) ◽  
pp. 3863
Author(s):  
Reem Y. Abdelghany ◽  
Salah Kamel ◽  
Hamdy M. Sultan ◽  
Ahmed Khorasy ◽  
Salah K. Elsayed ◽  
...  

Recently, photovoltaic (PV) energy has been considered one of the most exciting new technologies in the energy sector. PV power plants receive considerable attention because of their wide applications. Consequently, it is important to study the parameters of the solar cell model to control and determine the characteristics of the PV systems. In this study, an improved bonobo optimizer (IBO) was proposed to improve the performance of the conventional bonobo optimizer (BO). Both the IBO and the BO were utilized to obtain the accurate values of the unknown parameters of different mathematical models of solar cells. The proposed IBO improved the performance of the conventional BO by enhancing the exploitation (local search) and exploration (global search) phases to find the best optimal solution, where the search space was reduced using Levy flights and the sine–cosine function. Levy flights enhance the explorative phase, whereas the sine–cosine function improves the exploitation phase. Both the proposed IBO and the conventional BO were applied on single, double, and triple diode models of solar cells. To check the effectiveness of the proposed algorithm, statistical analysis based on the results of 20 runs of the optimization program was performed. The results obtained by the proposed IBO were compared with other algorithms, and all results of the proposed algorithm showed their durability and exceeded other algorithms.


Author(s):  
Vasiliki Panagakou ◽  
Panayiotis Psarrakos ◽  
Nikos Yannakakis

Sign in / Sign up

Export Citation Format

Share Document