scholarly journals Orientable and non-orientable Klein surfaces with maximal symmetry

1985 ◽  
Vol 26 (1) ◽  
pp. 31-34 ◽  
Author(s):  
David Singerman

Let X be a bordered Klein surface, by which we mean a Klein surface with non-empty boundary. X is characterized topologically by its orientability, the number k of its boundary components and the genus p of the closed surface obtained by filling in all the holes. The algebraic genus g of X is defined by.If g≥2 it is known that if G is a group of automorphisms of X then |G|≤12(g-l) and that the upper bound is attained for infinitely many values of g ([4], [5]). A bordered Klein surface for which this upper bound is attained is said to have maximal symmetry. A group of 12(g-l) automorphisms of a bordered Klein surface of algebraic genus g is called an M*-group and it is known that a finite group G is an M*-group if and only if it is generated by 3 non-trivial elements T1, T2, T3 which obey the relations([4]).

2007 ◽  
Vol 06 (01) ◽  
pp. 103-118 ◽  
Author(s):  
COY L. MAY

Let G be a finite group. The real genus ρ(G) is the minimum algebraic genus of any compact bordered Klein surface on which G acts. Here we consider 2-groups acting on bordered Klein surfaces. The main focus is determining the real genus of each of the 51 groups of order 32. We also obtain some general results about the partial presentations that 2-groups acting on bordered surfaces must have. In addition, we obtain genus formulas for some families of 2-groups and show that if G is a 2-group with positive real genus, then ρ(G) ≡ 1 mod 4.


1994 ◽  
Vol 36 (3) ◽  
pp. 313-330 ◽  
Author(s):  
E. Bujalance ◽  
A. F. Costa ◽  
G. Gromadzki ◽  
D. Singerman

In this paper we consider complex doubles of compact Klein surfaces that have large automorphism groups. It is known that a bordered Klein surface of algebraic genus g > 2 has at most 12(g − 1) automorphisms. Surfaces for which this bound is sharp are said to have maximal symmetry. The complex double of such a surface X is a compact Riemann surface X+ of genus g and it is easy to see that if G is the group of automorphisms of X then C2 × G is a group of automorphisms of X+. A natural question is whether X+ can have a group that strictly contains C2 × G. In [8] C. L. May claimed the following interesting result: there is a unique Klein surface X with maximal symmetry for which Aut X+ properly contains C2 × Aut X (where Aut X+ denotes the group of conformal and anticonformal automorphisms of X+).


1988 ◽  
Vol 103 (3) ◽  
pp. 427-449 ◽  
Author(s):  
John C. Harris ◽  
Nicholas J. Kuhn

LetBGbe the classifying space of a finite groupG. Consider the problem of finding astabledecompositionintoindecomposablewedge summands. Such a decomposition naturally splitsE*(BG), whereE* is any cohomology theory.


1989 ◽  
Vol 40 (1) ◽  
pp. 109-111 ◽  
Author(s):  
John Clark

An associative ring R with identity is called a left (right) FPF ring if given any finitely generated faithful left (right) R-module A and any left (right) R-module M then M is the epimorphic image of a direct sum of copies of A. Faith and Page have asked if the subring of elements fixed by a finite group of automorphisms of an FPF ring need also be FPF. Here we present examples showing the answer to be negative in general.


1981 ◽  
Vol 33 (2) ◽  
pp. 412-420 ◽  
Author(s):  
Martin R. Pettet

If A is a group acting on a set X and x ∈ X, we denote the stabilizer of x in A by CA(x) and let Γ(x) be the set of elements of X fixed by CA(x). We shall say the action of A is partitive if the distinct subsets Γ(x), x ∈ X, partition X. A special example of this phenomenon is the case of a semiregular action (when CA (x) = 1 for every x ∈ X so the induced partition is a trivial one). Our concern here is with the case that A is a group of automorphisms of a finite group G and X = G#, the set of non-identity elements of G. We shall prove that if A is nilpotent, then except in a very restricted situation, partitivity implies semiregularity.


1959 ◽  
Vol 11 ◽  
pp. 59-60 ◽  
Author(s):  
Hirosi Nagao

Let G be a finite group of order g, andbe an absolutely irreducible representation of degree fμ over a field of characteristic zero. As is well known, by using Schur's lemma (1), we can prove the following orthogonality relations for the coefficients :1It is easy to conclude from (1) the following orthogonality relations for characters:whereand is 1 or 0 according as t and s are conjugate in G or not, and n(t) is the order of the normalize of t.


1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


1991 ◽  
Vol 33 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface X of algebraic genus g ≥ 2 has maximal symmetry [6] if its automorphism group A(X) is of order 12(g — 1), the largest possible. The bordered surfaces with maximal symmetry are clearly of special interest and have been studied in several recent papers ([6] and [9] among others).


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


Sign in / Sign up

Export Citation Format

Share Document