orthogonality relations
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7279
Author(s):  
Jin Wei ◽  
Tao Yu ◽  
Dongping Jin ◽  
Mei Liu ◽  
Dengqing Cao ◽  
...  

A dynamic model of an L-shaped multi-beam joint structure is presented to investigate the nonlinear dynamic behavior of the system. Firstly, the nonlinear partial differential equations (PDEs) of motion for the beams, the governing equations of the tip mass, and their matching conditions and boundary conditions are obtained. The natural frequencies and the global mode shapes of the linearized model of the system are determined, and the orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to derive a set of nonlinear ordinary differential equations (ODEs) that govern the motion of the L-shaped multi-beam jointed structure. The accuracy of the model is verified by the comparison of the natural frequencies solved by the frequency equation and the ANSYS. Based on the nonlinear ODEs obtained in this model, the dynamic responses are worked out to investigate the effect of the tip mass and the joint on the nonlinear dynamic characteristic of the system. The results show that the inertia of the tip mass and the nonlinear stiffness of the joints have a great influence on the nonlinear response of the system.


2021 ◽  
pp. 35-44
Author(s):  
Saied A. Johnny ◽  
Buthainah A. A. Ahmed

In this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces. 


Author(s):  
Sören Bartels ◽  
Zhangxian Wang

AbstractIdentities that relate projections of Raviart–Thomas finite element vector fields to discrete gradients of Crouzeix–Raviart finite element functions are derived under general conditions. Various implications such as discrete convex duality results and a characterization of the image of the projection of the Crouzeix–Ravaiart space onto elementwise constant functions are deduced.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dorian Goldfeld ◽  
Eric Stade ◽  
Michael Woodbury

Abstract Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on $\mathrm {GL}(1)$ ) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for $\mathrm {GL}(2)$ and $\mathrm {GL}(3)$ have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group $\mathrm {GL}(4, \mathbb R)$ with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1018 ◽  
Author(s):  
Tomasz Czyżycki ◽  
Jiří Hrivnák ◽  
Lenka Motlochová

Discrete transforms of Weyl orbit functions on finite fragments of shifted dual root lattices are established. The congruence classes of the dual weight lattices intersected with the fundamental domains of the affine Weyl groups constitute the point sets of the transforms. The shifted weight lattices intersected with the fundamental domains of the extended dual affine Weyl groups form the sets of labels of Weyl orbit functions. The coinciding cardinality of the point and label sets and corresponding discrete orthogonality relations of Weyl orbit functions are demonstrated. The explicit counting formulas for the numbers of elements contained in the point and label sets are calculated. The forward and backward discrete Fourier-Weyl transforms, together with the associated interpolation and Plancherel formulas, are presented. The unitary transform matrices of the discrete transforms are exemplified for the case A 2 .


Author(s):  
J F van Diejen ◽  
E Emsiz

Abstract Discrete orthogonality relations for Hall–Littlewood polynomials are employed so as to derive cubature rules for the integration of homogeneous symmetric functions with respect to the density of the circular unitary ensemble (which originates from the Haar measure on the special unitary group $SU(n;\mathbb{C})$). By passing to Macdonald’s hyperoctahedral Hall–Littlewood polynomials, we moreover find analogous cubature rules for the integration with respect to the density of the circular quaternion ensemble (which originates in turn from the Haar measure on the compact symplectic group $Sp (n;\mathbb{H})$). The cubature formulas under consideration are exact for a class of rational symmetric functions with simple poles supported on a prescribed complex hyperplane arrangement. In the planar situations (corresponding to $SU(3;\mathbb{C})$ and $Sp (2;\mathbb{H})$), a determinantal expression for the Christoffel weights enables us to write down compact cubature rules for the integration over the equilateral triangle and the isosceles right triangle, respectively.


Author(s):  
Prashant Arote

In this paper, we will study the notion of a Frobenius ⋆-algebra and prove some orthogonality relations for the irreducible characters of a Frobenius ⋆-algebra. Then we will study [Formula: see text]-graded Frobenius ⋆-algebras and prove some twisted orthogonality relations for them.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 237
Author(s):  
Fethi Bouzeffour ◽  
Hanene Ben Mansour ◽  
Mubariz Garayev

This paper deals with the study of the zeros of the big q-Bessel functions. In particular, we prove new orthogonality relations for functions which are similar to the one for the classical Bessel functions. Also we give some applications related to the sampling theory.


Sign in / Sign up

Export Citation Format

Share Document