scholarly journals On group graded rings satisfying polynomial identities

1995 ◽  
Vol 37 (2) ◽  
pp. 205-210 ◽  
Author(s):  
A. V. Kelarev ◽  
J. Okniński

A number of classical theorems of ring theory deal with nilness and nilpotency of the Jacobson radical of various ring constructions (see [10], [18]). Several interesting results of this sort have appeared in the literature recently. In particular, it was proved in [1] that the Jacobson radical of every finitely generated PI-ring is nilpotent. For every commutative semigroup ring RS, it was shown in [11] that if J(R) is nil then J(RS) is nil. This result was generalized to all semigroup algebras satisfying polynomial identities in [15] (see [16, Chapter 21]). Further, it was proved in [12] that, for every normal band B, if J(R) is nilpotent, then J(RB) is nilpotent. A similar result for special band-graded rings was established in [13, Section 6]. Analogous theorems concerning nilpotency and local nilpotency were proved in [2] for rings graded by finite and locally finite semigroups.

Author(s):  
Jan Okniński

In this paper we will be concerned with the problem of describing the Jacobson radical of the semigroup algebraK[S] of an arbitrary semigroupSover a fieldKin the case where this algebra satisfies a polynomial identity. Recently, Munn characterized the radical of commutative semigroup algebras [9]. The key to his result was to show that, in this situation, the radical must be a nilideal. We are going to extend the latter to the case of PI-semigroup algebras. Further, we characterize the radical by means of the properties ofSor, more precisely, by some groups derived fromS. For this purpose we will exploit earlier results leading towards a characterization of semigroup algebras satisfying polynomial identities [5], [15], which generalized the well known case of group algebras (cf. [13], chap. 5).


Author(s):  
W. D. Munn

In two previous papers the author studied the Jacobson and nil redicals of the algebra of a commutative semigroup over a field [8] and over a commutative ring with unity [9]. This work is continued here.


Author(s):  
Puguh Wahyu Prasetyo

The development of Ring Theory motivates the existence of the development of the Radical Theory of Rings. This condition is motivated since there are rings which have properties other than those owned by the set ring of all integers. These rings are collected so that they fulfill certain properties and they are called radical classes of rings. As the development of science about how to separate the properties of radical classes of rings motivates the existence of supernilpotent radical classes. On the other hand, there exists the concept of graded rings. This concept can be generalized into the Radical Theory of Rings. Thus, the properties of the graded supernilpotent radical classes are very interesting to investigate. In this paper, some graded supernilpotent radical of rings are given and their construction will be described. It follows from this construction that the graded Jacobson radical is a graded supernilpotent radical.


2005 ◽  
Vol 15 (05n06) ◽  
pp. 1129-1150 ◽  
Author(s):  
E. L. PERVOVA

Kaplansky's conjecture claims that the Jacobson radical [Formula: see text] of a group algebra K[G], where K is a field of characteristic p > 0, coincides with its augmentation ideal [Formula: see text] if and only if G is a locally finite p-group. By a theorem of Passman, if G is finitely generated and [Formula: see text] then any maximal subgroup of G is normal of index p. In the present paper, we consider one infinite series of finitely generated infinite p-groups (hence not locally finite p-groups), so called GGS-groups. We prove that their maximal subgroups are nonetheless normal of index p. Thus these groups remain among potential counterexamples to Kaplansky's conjecture.


1989 ◽  
Vol 105 (2) ◽  
pp. 277-283 ◽  
Author(s):  
W. D. Munn

A band is a semigroup in which every element is idempotent. In this note we give an explicit description of the Jacobson radical of the semigroup ring of a band over a ring with unity. It is shown, further, that this radical is nil if and only if the Jacobson radical of the coefficient ring is nil. For the particular case of a normal band (see below for the definition) the Jacobson radical of the band ring is nilpotent if and only if the Jacobson radical of the coefficient ring is nilpotent; but this result does not extend to arbitrary bands.


2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


2014 ◽  
Vol 13 (04) ◽  
pp. 1350121 ◽  
Author(s):  
AGATA SMOKTUNOWICZ

It was shown by Bergman that the Jacobson radical of a Z-graded ring is homogeneous. This paper shows that the analogous result holds for nil radicals, namely, that the nil radical of a Z-graded ring is homogeneous. It is obvious that a subring of a nil ring is nil, but generally a subring of a Jacobson radical ring need not be a Jacobson radical ring. In this paper, it is shown that every subring which is generated by homogeneous elements in a graded Jacobson radical ring is always a Jacobson radical ring. It is also observed that a ring whose all subrings are Jacobson radical rings is nil. Some new results on graded-nil rings are also obtained.


2011 ◽  
Vol 10 (03) ◽  
pp. 475-489 ◽  
Author(s):  
PINAR AYDOĞDU ◽  
A. ÇIĞDEM ÖZCAN ◽  
PATRICK F. SMITH

Let R be a ring. Modules satisfying ascending or descending chain conditions (respectively, acc and dcc) on non-summand submodules belongs to some particular classes [Formula: see text], such as the class of all R-modules, finitely generated, finite-dimensional and cyclic modules, are considered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right Noetherian ring R, a right R-module M satisfies acc on finitely generated non-summands if and only if M satisfies acc on non-summands; a right R-module M satisfies dcc on finitely generated non-summands if and only if M is locally Artinian. Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a semiregular ring such that the Jacobson radical J is left t-nilpotent.


1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


Sign in / Sign up

Export Citation Format

Share Document