semigroup algebra
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 40 ◽  
pp. 1-9
Author(s):  
Ebrahim Nasrabadi

‎Let $S$ be a commutative inverse semigroup with idempotent set $E$‎. ‎In this paper‎, ‎we show that for every $n\in \mathbb{N}_0$‎, ‎$n$-th Hochschild cohomology group of semigroup algebra $\ell^1(S)$ with coefficients in $\ell^\infty(S)$ and its $n$-th $\ell^1(E)$-module cohomology group‎, ‎are equal‎. ‎Indeed‎, ‎we prove that‎ ‎\[ \HH^{n}(\ell^1(S),\ell^\infty(S))=\HH^{n}_{\ell^1(E)}(\ell^1(S),\ell^\infty(S)),\] for all $n\geq 0$‎.


2021 ◽  
Vol 19 (1) ◽  
pp. 803-832
Author(s):  
Junying Guo ◽  
Xiaojiang Guo

Abstract Abundant semigroups originate from p.p. rings and are generalizations of regular semigroups. The main aim of this paper is to study the primeness and the primitivity of abundant semigroup algebras. We introduce and study D ∗ {{\mathcal{D}}}^{\ast } -graphs and Fountain matrices of a semigroup. Based on D ∗ {{\mathcal{D}}}^{\ast } -graphs and Fountain matrices, we determine when a contracted semigroup algebra of a primitive abundant semigroup is prime (respectively, semiprime, semiprimitive, or primitive). It is well known that for any algebra A {\mathcal{A}} with unity, A {\mathcal{A}} is primitive (prime) if and only if so is M n ( A ) {M}_{n}\left({\mathcal{A}}) . Our results can be viewed as some kind of generalizations of such a known result. In addition, it is proved that any contracted semigroup algebra of a locally ample semigroup whose set of idempotents is locally finite (respectively, locally pseudofinite and satisfying the regularity condition) is isomorphic to some contracted semigroup algebra of primitive abundant semigroups. Moreover, we obtain sufficient and necessary conditions for these classes of contracted semigroup algebras to be prime (respectively, semiprime, semiprimitive, or primitive). Finally, the structure of simple contracted semigroup algebras of idempotent-connected abundant semigroups is established. Our results enrich and extend the related results on regular semigroup algebras.


Author(s):  
Michael T Jury ◽  
Robert T W Martin

Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $C^{\ast }-$algebra, the $C^{\ast }-$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $C^{\ast }-$algebras; any *−representation of the Cuntz–Toeplitz $C^{\ast }-$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory.


2020 ◽  
Vol 18 (1) ◽  
pp. 333-352
Author(s):  
Junying Guo ◽  
Xiaojiang Guo

Abstract It is proved that for an IC abundant semigroup (a primitive abundant semigroup; a primitively semisimple semigroup) S and a field K, if K 0[S] is right (left) self-injective, then S is a finite regular semigroup. This extends and enriches the related results of Okniński on self-injective algebras of regular semigroups, and affirmatively answers Okniński’s problem: does that a semigroup algebra K[S] is a right (respectively, left) self-injective imply that S is finite? (Semigroup Algebras, Marcel Dekker, 1990), for IC abundant semigroups (primitively semisimple semigroups; primitive abundant semigroups). Moreover, we determine the structure of K 0[S] being right (left) self-injective when K 0[S] has a unity. As their applications, we determine some sufficient and necessary conditions for the algebra of an IC abundant semigroup (a primitively semisimple semigroup; a primitive abundant semigroup) over a field to be semisimple.


Author(s):  
A. Sahami ◽  
E. Ghaderi ◽  
S. M. Kazemi Torbaghan ◽  
B. Olfatian Gillan

In this paper, we study Johnson pseudo-contractibility of second dual of some Banach algebras. We show that the semigroup algebra [Formula: see text] is Johnson pseudo-contractible if and only if [Formula: see text] is a finite amenable group, where [Formula: see text] is an archimedean semigroup. We also show that the matrix algebra [Formula: see text] is Johnson pseudo-contractible if and only if [Formula: see text] is finite. We study Johnson pseudo-contractibility of certain projective tensor product second duals Banach algebras.


2019 ◽  
Vol 101 (3) ◽  
pp. 488-495
Author(s):  
HOGER GHAHRAMANI

Let $S$ be a discrete inverse semigroup, $l^{1}(S)$ the Banach semigroup algebra on $S$ and $\mathbb{X}$ a Banach $l^{1}(S)$-bimodule which is an $L$-embedded Banach space. We show that under some mild conditions ${\mathcal{H}}^{1}(l^{1}(S),\mathbb{X})=0$. We also provide an application of the main result.


2019 ◽  
Vol 230 (2) ◽  
pp. 855-894
Author(s):  
Eleftherios Kastis
Keyword(s):  

Author(s):  
Olufemi J. Ogunsola ◽  
Ifeyinwa E. Daniel

Abstract In this article the pseudo-amenability and pseudo-contractibility of restricted semigroup algebra $l_r^1(S)$ and semigroup algebra, l1(Sr) on restricted semigroup, Sr are investigated for different classes of inverse semi-groups such as Brandt semigroup, and Clifford semigroup. We particularly show the equivalence between pseudo-amenability and character amenability of restricted semigroup algebra on a Clifford semigroup and semigroup algebra on a restricted semigroup. Moreover, we show that when S = M0(G, I)is a Brandt semigroup, pseudo-amenability of l1(Sr) is equivalent to its pseudo-contractibility.


Sign in / Sign up

Export Citation Format

Share Document