scholarly journals ON THE OSOFSKY–SMITH THEOREM

2010 ◽  
Vol 52 (A) ◽  
pp. 61-67 ◽  
Author(s):  
SEPTIMIU CRIVEI ◽  
CONSTANTIN NĂSTĂSESCU ◽  
BLAS TORRECILLAS

AbstractWe recall a version of the Osofsky–Smith theorem in the context of a Grothendieck category and derive several consequences of this result. For example, it is deduced that every locally finitely generated Grothendieck category with a family of completely injective finitely generated generators is semi-simple. We also discuss the torsion-theoretic version of the classical Osofsky theorem which characterizes semi-simple rings as those rings whose every cyclic module is injective.

1995 ◽  
Vol 52 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Yiqiang Zhou

Responding to a question on right weakly semisimple rings due to Jain, Lopez-Permouth and Singh, we report the existence of a non-right-Noetherian ring R for which every uniform cyclic right it-module is weakly-injective and every uniform finitely generated right R-module is compressible. We show that a ring R is a right Noetherian ring for which every cyclic right R-module is weakly R-injective if and only if R is a right Noetherian ring for which every uniform cyclic right R-module is compressible if and only if every cyclic right R-module is compressible. Finally, we characterise those modules M for which every finitely generated (respectively, cyclic) module in σ[M] is compressible.


1991 ◽  
Vol 34 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Nguyen V. Dung

A module M is called a CC-module if every closed submodule of M is cyclic. It is shown that a cyclic module M is a direct sum of indecomposable submodules if all quotients of cyclic submodules of M are CC-modules. This theorem generalizes a recent result of B. L. Osofsky and P. F. Smith on cyclic completely CS-modules. Some further applications are given for cyclic modules which are decomposed into projectives and injectives.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

2016 ◽  
Vol 17 (4) ◽  
pp. 979-980
Author(s):  
Alberto Chiecchio ◽  
Florian Enescu ◽  
Lance Edward Miller ◽  
Karl Schwede
Keyword(s):  

Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


Sign in / Sign up

Export Citation Format

Share Document