scholarly journals THE CANCELLATION NORM AND THE GEOMETRY OF BI-INVARIANT WORD METRICS

2015 ◽  
Vol 58 (1) ◽  
pp. 153-176 ◽  
Author(s):  
MICHAEL BRANDENBURSKY ◽  
ŚWIATOSŁAW R. GAL ◽  
JAREK KĘDRA ◽  
MICHAŁ MARCINKOWSKI

AbstractWe study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are either bounded or detected by homogeneous quasimorphisms. We call this property the bq-dichotomy and we prove it for many classes of groups of geometric origin.

Author(s):  
Sam Shepherd ◽  
Daniel J. Woodhouse

Abstract We study the quasi-isometric rigidity of a large family of finitely generated groups that split as graphs of groups with virtually free vertex groups and two-ended edge groups. Let G be a group that is one-ended, hyperbolic relative to virtually abelian subgroups, and has JSJ decomposition over two-ended subgroups containing only virtually free vertex groups that are not quadratically hanging. Our main result is that any group quasi-isometric to G is abstractly commensurable to G. In particular, our result applies to certain “generic” HNN extensions of a free group over cyclic subgroups.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


10.37236/1119 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Laura Ciobanu ◽  
Saša Radomirović

Let ${\cal T}$ be the Cayley graph of a finitely generated free group $F$. Given two vertices in ${\cal T}$ consider all the walks of a given length between these vertices that at a certain time must follow a number of predetermined steps. We give formulas for the number of such walks by expressing the problem in terms of equations in $F$ and solving the corresponding equations.


2008 ◽  
Vol 18 (02) ◽  
pp. 375-405 ◽  
Author(s):  
FRÉDÉRIQUE BASSINO ◽  
CYRIL NICAUD ◽  
PASCAL WEIL

We give an efficient algorithm to randomly generate finitely generated subgroups of a given size, in a finite rank free group. Here, the size of a subgroup is the number of vertices of its representation by a reduced graph such as can be obtained by the method of Stallings foldings. Our algorithm randomly generates a subgroup of a given size n, according to the uniform distribution over size n subgroups. In the process, we give estimates of the number of size n subgroups, of the average rank of size n subgroups, and of the proportion of such subgroups that have finite index. Our algorithm has average case complexity [Formula: see text] in the RAM model and [Formula: see text] in the bitcost model.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


1992 ◽  
Vol 35 (3) ◽  
pp. 390-399 ◽  
Author(s):  
Goansu Kim ◽  
C. Y. Tang

AbstractIn general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hip Kuen Chong ◽  
Daniel T. Wise

Abstract We study a family of finitely generated residually finite groups. These groups are doubles F 2 * H F 2 F_{2}*_{H}F_{2} of a rank-2 free group F 2 F_{2} along an infinitely generated subgroup 𝐻. Varying 𝐻 yields uncountably many groups up to isomorphism.


1979 ◽  
Vol 31 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
A. M. Brunner ◽  
R. G. Burns

In [5] M. Hall Jr. proved, without stating it explicitly, that every finitely generated subgroup of a free group is a free factor of a subgroup of finite index. This result was made explicit, and used to give simpler proofs of known results, in [1] and [7]. The standard generalization to free products was given in [2]: If, following [13], we call a group in which every finitely generated subgroup is a free factor of a subgroup of finite index an M. Hall group, then a free product of M. Hall groups is again an M. Hall group. The recent appearance of [13], in which this result is reproved, and the rather restrictive nature of the property of being an M. Hall group, led us to attempt to determine the structure of such groups. In this paper we go a considerable way towards achieving this for those M. Hall groups which are both finitely generated and accessible.


1996 ◽  
Vol 39 (3) ◽  
pp. 294-307 ◽  
Author(s):  
Goansu Kim

AbstractWe show that polygonal products of polycyclic-by-finite groups amalgamating central cyclic subgroups, with trivial intersections, are conjugacy separable. Thus polygonal products of finitely generated abelian groups amalgamating cyclic subgroups, with trivial intersections, are conjugacy separable. As a corollary of this, we obtain that the group A1 *〈a1〉A2 *〈a2〉 • • • *〈am-1〉Am is conjugacy separable for the abelian groups Ai.


Sign in / Sign up

Export Citation Format

Share Document