scholarly journals A Forward Algorithm for Solving Optimal Stopping Problems

2006 ◽  
Vol 43 (01) ◽  
pp. 102-113
Author(s):  
Albrecht Irle

We consider the optimal stopping problem for g(Z n ), where Z n , n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B 0 ⊇ B 1 ⊇ B 2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.

2006 ◽  
Vol 43 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Albrecht Irle

We consider the optimal stopping problem for g(Zn), where Zn, n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B0 ⊇ B1 ⊇ B2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.


2005 ◽  
Vol 42 (03) ◽  
pp. 826-838 ◽  
Author(s):  
X. Guo ◽  
J. Liu

Consider a geometric Brownian motion X t (ω) with drift. Suppose that there is an independent source that sends signals at random times τ 1 < τ 2 < ⋯. Upon receiving each signal, a decision has to be made as to whether to stop or to continue. Stopping at time τ will bring a reward S τ , where S t = max(max0≤u≤t X u , s) for some constant s ≥ X 0. The objective is to choose an optimal stopping time to maximize the discounted expected reward E[e−r τ i S τ i | X 0 = x, S 0 = s], where r is a discount factor. This problem can be viewed as a randomized version of the Bermudan look-back option pricing problem. In this paper, we derive explicit solutions to this optimal stopping problem, assuming that signal arrival is a Poisson process with parameter λ. Optimal stopping rules are differentiated by the frequency of the signal process. Specifically, there exists a threshold λ* such that if λ>λ*, the optimal stopping problem is solved via the standard formulation of a ‘free boundary’ problem and the optimal stopping time τ * is governed by a threshold a * such that τ * = inf{τ n : X τ n ≤a * S τ n }. If λ≤λ* then it is optimal to stop immediately a signal is received, i.e. at τ * = τ 1. Mathematically, it is intriguing that a smooth fit is critical in the former case while irrelevant in the latter.


1993 ◽  
Vol 25 (4) ◽  
pp. 825-846 ◽  
Author(s):  
Frans A. Boshuizen ◽  
José M. Gouweleeuw

In this paper, optimal stopping problems for semi-Markov processes are studied in a fairly general setting. In such a process transitions are made from state to state in accordance with a Markov chain, but the amount of time spent in each state is random. The times spent in each state follow a general renewal process. They may depend on the present state as well as on the state into which the next transition is made.Our goal is to maximize the expected net return, which is given as a function of the state at time t minus some cost function. Discounting may or may not be considered. The main theorems (Theorems 3.5 and 3.11) are expressions for the optimal stopping time in the undiscounted and discounted case. These theorems generalize results of Zuckerman [16] and Boshuizen and Gouweleeuw [3]. Applications are given in various special cases.The results developed in this paper can also be applied to semi-Markov shock models, as considered in Taylor [13], Feldman [6] and Zuckerman [15].


2005 ◽  
Vol 42 (3) ◽  
pp. 826-838 ◽  
Author(s):  
X. Guo ◽  
J. Liu

Consider a geometric Brownian motion Xt(ω) with drift. Suppose that there is an independent source that sends signals at random times τ1 < τ2 < ⋯. Upon receiving each signal, a decision has to be made as to whether to stop or to continue. Stopping at time τ will bring a reward Sτ, where St = max(max0≤u≤tXu, s) for some constant s ≥ X0. The objective is to choose an optimal stopping time to maximize the discounted expected reward E[e−rτiSτi | X0 = x, S0 = s], where r is a discount factor. This problem can be viewed as a randomized version of the Bermudan look-back option pricing problem. In this paper, we derive explicit solutions to this optimal stopping problem, assuming that signal arrival is a Poisson process with parameter λ. Optimal stopping rules are differentiated by the frequency of the signal process. Specifically, there exists a threshold λ* such that if λ>λ*, the optimal stopping problem is solved via the standard formulation of a ‘free boundary’ problem and the optimal stopping time τ* is governed by a threshold a* such that τ* = inf{τn: Xτn≤a*Sτn}. If λ≤λ* then it is optimal to stop immediately a signal is received, i.e. at τ* = τ1. Mathematically, it is intriguing that a smooth fit is critical in the former case while irrelevant in the latter.


1970 ◽  
Vol 2 (2) ◽  
pp. 259-286 ◽  
Author(s):  
John Bather

This paper is concerned with the general problem of choosing an optimal stopping time for a Brownian motion process, where the cost associated with any trajectory depends only on its final time and position.


1993 ◽  
Vol 25 (04) ◽  
pp. 825-846 ◽  
Author(s):  
Frans A. Boshuizen ◽  
José M. Gouweleeuw

In this paper, optimal stopping problems for semi-Markov processes are studied in a fairly general setting. In such a process transitions are made from state to state in accordance with a Markov chain, but the amount of time spent in each state is random. The times spent in each state follow a general renewal process. They may depend on the present state as well as on the state into which the next transition is made. Our goal is to maximize the expected net return, which is given as a function of the state at time t minus some cost function. Discounting may or may not be considered. The main theorems (Theorems 3.5 and 3.11) are expressions for the optimal stopping time in the undiscounted and discounted case. These theorems generalize results of Zuckerman [16] and Boshuizen and Gouweleeuw [3]. Applications are given in various special cases. The results developed in this paper can also be applied to semi-Markov shock models, as considered in Taylor [13], Feldman [6] and Zuckerman [15].


1970 ◽  
Vol 2 (02) ◽  
pp. 259-286 ◽  
Author(s):  
John Bather

This paper is concerned with the general problem of choosing an optimal stopping time for a Brownian motion process, where the cost associated with any trajectory depends only on its final time and position.


2020 ◽  
Vol 81 (7) ◽  
pp. 1192-1210
Author(s):  
O.V. Zverev ◽  
V.M. Khametov ◽  
E.A. Shelemekh

1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


Sign in / Sign up

Export Citation Format

Share Document