Two theorems on solutions of differential-difference equations and applications to epidemic theory

1967 ◽  
Vol 4 (02) ◽  
pp. 271-280 ◽  
Author(s):  
Norman C. Severo

We present two theorems that provide simple iterative solutions of special systems of differential-difference equations. We show as examples of the theorems the simple stochastic epidemic (cf. Bailey, 1957, p. 39, and Bailey, 1963) and the general stochastic epidemic (cf. Bailey, 1957; Gani, 1965; and Siskind, 1965), in each of which we let the initial distribution of the number of uninfected susceptibles and the number of infectives be arbitrary but assume the total population size bounded. In all of the references cited above the methods of solution involve solving a corresponding partial differential equation, whereas we deal directly with the original system of ordinary differential-difference equations. Furthermore in the cited references the authors begin at time t = 0 with a population having a fixed number of uninfected susceptibles and a fixed number of infectives. For the simple stochastic epidemic with arbitrary initial distribution we provide solutions not obtainable by the results given by Bailey (1957 or 1963). For the general stochastic epidemic, if we use the results of Gani or Siskind, then the solution of the problem having an arbitrary initial distribution would involve additional steps that would sum proportionally-weighted conditional results.

1967 ◽  
Vol 4 (2) ◽  
pp. 271-280 ◽  
Author(s):  
Norman C. Severo

We present two theorems that provide simple iterative solutions of special systems of differential-difference equations. We show as examples of the theorems the simple stochastic epidemic (cf. Bailey, 1957, p. 39, and Bailey, 1963) and the general stochastic epidemic (cf. Bailey, 1957; Gani, 1965; and Siskind, 1965), in each of which we let the initial distribution of the number of uninfected susceptibles and the number of infectives be arbitrary but assume the total population size bounded. In all of the references cited above the methods of solution involve solving a corresponding partial differential equation, whereas we deal directly with the original system of ordinary differential-difference equations. Furthermore in the cited references the authors begin at time t = 0 with a population having a fixed number of uninfected susceptibles and a fixed number of infectives. For the simple stochastic epidemic with arbitrary initial distribution we provide solutions not obtainable by the results given by Bailey (1957 or 1963). For the general stochastic epidemic, if we use the results of Gani or Siskind, then the solution of the problem having an arbitrary initial distribution would involve additional steps that would sum proportionally-weighted conditional results.


1973 ◽  
Vol 10 (02) ◽  
pp. 277-288 ◽  
Author(s):  
L. Billard

By an appropriate partitioning of the matrix of coefficients in the system of differential difference equations for the general stochastic epidemic, the nature of the state probabilities is shown to consist of combinations of factorial terms. Further, factorial moments are readily obtained. In particular, the mean and variance of the number of susceptibles are derived.


1973 ◽  
Vol 10 (2) ◽  
pp. 277-288 ◽  
Author(s):  
L. Billard

By an appropriate partitioning of the matrix of coefficients in the system of differential difference equations for the general stochastic epidemic, the nature of the state probabilities is shown to consist of combinations of factorial terms. Further, factorial moments are readily obtained. In particular, the mean and variance of the number of susceptibles are derived.


1972 ◽  
Vol 9 (02) ◽  
pp. 257-269 ◽  
Author(s):  
J. Gani ◽  
D. Jerwood

This paper is concerned with the cost Cis = aWis + bTis (a, b > 0) of a general stochastic epidemic starting with i infectives and s susceptibles; Tis denotes the duration of the epidemic, and Wis the area under the infective curve. The joint Laplace-Stieltjes transform of (Wis, Tis ) is studied, and a recursive equation derived for it. The duration Tis and its mean Nis are considered in some detail, as are also Wis and its mean Mis . Using the results obtained, bounds are found for the mean cost of the epidemic.


2008 ◽  
Vol 144 (4) ◽  
pp. 867-919 ◽  
Author(s):  
Andrea Pulita

AbstractWe develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.


2001 ◽  
Vol 38 (01) ◽  
pp. 18-35 ◽  
Author(s):  
A. N. Startsev

A generalisation of the classical general stochastic epidemic within a closed, homogeneously mixing population is considered, in which the infectious periods of infectives follow i.i.d. random variables having an arbitrary but specified distribution. The asymptotic behaviour of the total size distribution for the epidemic as the initial numbers of susceptibles and infectives tend to infinity is investigated by generalising the construction of Sellke and reducing the problem to a boundary crossing problem for sums of independent random variables.


1975 ◽  
Vol 12 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Richard J. Kryscio

Recently, Billard (1973) derived a solution to the forward equations of the general stochastic model. This solution contains some recursively defined constants. In this paper we solve these forward equations along each of the paths the process can follow to absorption. A convenient method of combining the solutions for the different paths results in a simplified non-recursive expression for the transition probabilities of the process.


Sign in / Sign up

Export Citation Format

Share Document