On improvements of the order of approximation in the Poisson limit theorem

1996 ◽  
Vol 33 (01) ◽  
pp. 146-155 ◽  
Author(s):  
K. Borovkov ◽  
D. Pfeifer

In this paper we consider improvements in the rate of approximation for the distribution of sums of independent Bernoulli random variables via convolutions of Poisson measures with signed measures of specific type. As a special case, the distribution of the number of records in an i.i.d. sequence of length n is investigated. For this particular example, it is shown that the usual rate of Poisson approximation of O(1/log n) can be lowered to O(1/n 2). The general case is discussed in terms of operator semigroups.

1996 ◽  
Vol 33 (1) ◽  
pp. 146-155 ◽  
Author(s):  
K. Borovkov ◽  
D. Pfeifer

In this paper we consider improvements in the rate of approximation for the distribution of sums of independent Bernoulli random variables via convolutions of Poisson measures with signed measures of specific type. As a special case, the distribution of the number of records in an i.i.d. sequence of length n is investigated. For this particular example, it is shown that the usual rate of Poisson approximation of O(1/log n) can be lowered to O(1/n2). The general case is discussed in terms of operator semigroups.


2009 ◽  
Vol 46 (02) ◽  
pp. 585-592
Author(s):  
Anna Pósfai

In this paper we refine a Poisson limit theorem of Gnedenko and Kolmogorov (1954): we determine the error order of a Poisson approximation for sums of asymptotically negligible integer-valued random variables that converge in distribution to the Poisson law. As an application of our results, we investigate the case of the coupon collector's problem when the distribution of the collector's waiting time is asymptotically Poisson.


2009 ◽  
Vol 46 (2) ◽  
pp. 585-592
Author(s):  
Anna Pósfai

In this paper we refine a Poisson limit theorem of Gnedenko and Kolmogorov (1954): we determine the error order of a Poisson approximation for sums of asymptotically negligible integer-valued random variables that converge in distribution to the Poisson law. As an application of our results, we investigate the case of the coupon collector's problem when the distribution of the collector's waiting time is asymptotically Poisson.


2004 ◽  
Vol 41 (4) ◽  
pp. 1081-1092 ◽  
Author(s):  
P. Vellaisamy

Consider a sequence of independent Bernoulli trials with success probability p. Let N(n; k1, k2) denote the number of times that k1 failures are followed by k2 successes among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total variation upper bound for the rate of convergence of N(n; k1, k2) to a suitable Poisson random variable. As a special case, the corresponding limit theorem is established. Similar results are obtained for Nk3(n; k1, k2), the number of times that k1 failures followed by k2 successes occur k3 times successively in n Bernoulli trials. The bounds obtained are generally sharper than, and improve upon, some of the already known results. Finally, the technique is adapted to obtain Poisson approximation results for the occurrences of the above-mentioned events under Markov-dependent trials.


1994 ◽  
Vol 26 (04) ◽  
pp. 855-875 ◽  
Author(s):  
Irene Hueter

Consider the convex hull of n independent, identically distributed points in the plane. Functionals of interest are the number of vertices Nn , the perimeter Ln and the area An of the convex hull. We study the asymptotic behaviour of these three quantities when the points are standard normally distributed. In particular, we derive the variances of Nn, Ln and An for large n and prove a central limit theorem for each of these random variables. We enlarge on a method developed by Groeneboom (1988) for uniformly distributed points supported on a bounded planar region. The process of vertices of the convex hull is of central importance. Poisson approximation and martingale techniques are used.


1983 ◽  
Vol 20 (01) ◽  
pp. 47-60 ◽  
Author(s):  
M. Berman ◽  
G. K. Eagleson

Silverman and Brown (1978) have derived Poisson limit theorems for certain sequences of symmetric statistics, based on a sample of independent identically distributed random variables. In this paper an incomplete version of these statistics is considered and a Poisson limit result shown to hold. The powers of some tests based on the incomplete statistic are investigated and the main results of the paper are used to simplify the derivations of the asymptotic distributions of some statistics previously published in the literature.


2005 ◽  
Vol 42 (2) ◽  
pp. 173-194
Author(s):  
István Fazekas ◽  
Alexey Chuprunov

Almost sure limit theorems are presented for random allocations. A general almost sure limit theorem is proved for arrays of random variables. It is applied to obtain almost sure versions of the central limit theorem for the number of empty boxes when the parameters are in the central domain. Almost sure versions of the Poisson limit theorem in the left domain are also proved.


1974 ◽  
Vol 11 (1) ◽  
pp. 219-222 ◽  
Author(s):  
János Galambos

Let A1, A2, ···, An be events on a given probability space and let Br, n be the event that exactly r of the A's occur. Let further Sk (n) be the kth binomial moment of the number of the A's which occur. A sufficient condition is given for the existence of lim P (Br,n), as n→ + ∞, in terms of limits of the Sk(n)'s and a formula is given for the limit above. This formula for the limit is similar to the sieve theorem of Takács (1967) for infinite sequences of events and in the proof we make use of Takács's analytic method. The result is immediately applicable to the limit distribution of the maximum of (dependent) random variables X1, X2, ···, Xn by choosing Aj = {Xj ≧ x}. Our main theorem is reformulated for this special case and an example is given for illustration.


2005 ◽  
Vol 42 (2) ◽  
pp. 334-345 ◽  
Author(s):  
Peter Neal

We consider epidemics in populations that are partitioned into small groups known as households. Whilst infectious, a typical infective makes global and local contact with individuals chosen independently and uniformly from the whole population or their own household, as appropriate. Previously, the classical Poisson approximation for the number of survivors of a severe epidemic has been extended to the household model. However, in the current work we exploit a Sellke-type construction of the epidemic process, which enables the derivation of sufficient conditions for the existence of a compound Poisson limit theorem for the survivors of the epidemic. The results are specialised to the Reed-Frost and general stochastic epidemic models.


2021 ◽  
Vol 58 (4) ◽  
pp. 966-977
Author(s):  
Judith Schilling ◽  
Norbert Henze

AbstractIn the collector’s problem with group drawings, s out of n different types of coupon are sampled with replacement. In the uniform case, each s-subset of the types has the same probability of being sampled. For this case, we derive a Poisson limit theorem for the number of types that are sampled at most $c-1$ times, where $c \ge 1$ is fixed. In a specified approximate nonuniform setting, we prove a Poisson limit theorem for the special case $c=1$ . As corollaries, we obtain limit distributions for the waiting time for c complete series of types in the uniform case and a single complete series in the approximate nonuniform case.


Sign in / Sign up

Export Citation Format

Share Document