scholarly journals Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence

2009 ◽  
Vol 643 ◽  
pp. 279-308 ◽  
Author(s):  
D. CHUNG ◽  
D. I. PULLIN

We report direct numerical simulation (DNS) and large-eddy simulation (LES) of statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use an adaptation of the fringe-region technique, which continually supplies the flow with unmixed fluids at two opposite faces of a triply periodic domain in the presence of gravity, effectively maintaining an unstably stratified, but statistically stationary flow. We also develop a new method to solve the governing equations, based on the Helmholtz–Hodge decomposition, that guarantees discrete mass conservation regardless of iteration errors. Whilst some statistics were found to be sensitive to the computational box size, we show, from inner-scaled planar spectra, that the small scales exhibit similarity independent of Reynolds number, density ratio and aspect ratio. We also perform LES of the present flow using the stretched-vortex subgrid-scale (SGS) model. The utility of an SGS scalar flux closure for passive scalars is demonstrated in the present active-scalar, stably stratified flow setting. The multi-scale character of the stretched-vortex SGS model is shown to enable extension of some second-order statistics to subgrid scales. Comparisons with DNS velocity spectra and velocity-density cospectra show that both the resolved-scale and SGS-extended components of the LES spectra accurately capture important features of the DNS spectra, including small-scale anisotropy and the shape of the viscous roll-off.

2008 ◽  
Vol 65 (7) ◽  
pp. 2437-2447 ◽  
Author(s):  
V. M. Canuto ◽  
Y. Cheng ◽  
A. M. Howard ◽  
I. N. Esau

Abstract A large set of laboratory, direct numerical simulation (DNS), and large eddy simulation (LES) data indicates that in stably stratified flows turbulent mixing exists up to Ri ∼ O(100), meaning that there is practically no Ri(cr). On the other hand, traditional local second-order closure (SOC) models entail a critical Ri(cr) ∼ O(1) above which turbulence ceases to exist and are therefore unable to explain the above data. The authors suggest how to modify the recent SOC model of Cheng et al. to reproduce the above data for arbitrary Ri.


Sign in / Sign up

Export Citation Format

Share Document