hot wire
Recently Published Documents


TOTAL DOCUMENTS

3512
(FIVE YEARS 278)

H-INDEX

76
(FIVE YEARS 5)

2022 ◽  
pp. 113364
Author(s):  
Cheng-Ling Lee ◽  
Yi-Ching Chang ◽  
Chao-Tsung Ma ◽  
Chien-Hsing Chen ◽  
Wei-Wei Hsiang

2021 ◽  
Vol 12 (1) ◽  
pp. 329
Author(s):  
Jose I. Prado ◽  
Uxía Calviño ◽  
Luis Lugo

The lack of a standard experimental procedure to determine thermal conductivity of fluids is noticeable in heat transfer processes from practical and fundamental perspectives. Since a wide variety of techniques have been used, reported literature data have huge discrepancies. A common practice is using manufactured thermal conductivity meters for nanofluids, which can standardize the measurements but are also somewhat inaccurate. In this study, a new methodology to perform reliable measurements with a recent commercial transient hot-wire device is introduced. Accordingly, some extensively studied fluids in the literature (water, ethylene glycol, ethylene glycol:water mixture 50:50 vol%, propylene glycol, and n-tetradecane) covering the range 0.100 to 0.700 W m−1 K−1 were used to check the device in the temperature range 283.15 to 333.15 K. Deviations between the collected data and the theoretical model, and repeatabilities and deviations between reported and literature values, were analyzed. Systematic deviations in raw data were found, and a correction factor depending on the mean thermal conductivity was proposed to operate with nanofluids. Considering all tested effects, the expanded (k = 2) uncertainty of the device was set as 5%. This proposed methodology was also checked with n-hexadecane and magnesium-oxide-based n-tetradecane nanofluids.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 162
Author(s):  
Katarzyna Socha ◽  
Paweł Jamróz

Changes in the temperature of the medium significantly affect the static characteristics of hot-wire anemometry measuring wires, which causes errors in the results of flow velocity measurements. High temperatures of the medium make it necessary to additionally heat the sensor to even higher temperatures, which may lead to its damage due to wire burnout. The article proposes a solution to the problem of measuring the flow velocity in conditions of non-stationary temperatures with the use of the method of cross-correlation of signals from two-wire resistance thermometers. The main assumptions of the method and its experimental verification were presented.


Author(s):  
N. Suwannatee ◽  
S. Wonthaisong ◽  
M. Yamamoto ◽  
S. Shinohara ◽  
R. Phaoniam
Keyword(s):  

2021 ◽  
Vol 2119 (1) ◽  
pp. 012021
Author(s):  
V V Lemanov ◽  
V I Terekhov ◽  
K A Sharov ◽  
A A Shumeiko

Abstract In this work, the experimental data are compared with the version of the “strong” jet (Re ≫ 1) of the exact Landau-Squire solution. The experiments were performed for a submerged air jet flowing out of a tube with a diameter of D = 3.2 mm and a length of more than 100D at a Reynolds number equal to Re = 436. The initial conditions in the jet are the Poiseuille velocity profile, the level of velocity pulsations is less than 1%. Measurements were carried out using a hot-wire anemometer. It is shown that satisfactory agreement with theory is achieved at distances from the tube starting from x/D = 5.6 and up to the zone of transition to turbulence (x/D > 35). Turbulence along the jet axis will increase from 1% to 2.5%, while in the mixing layers it increases to 4.7%.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012132
Author(s):  
D Y Kochkin ◽  
A L Bogoslovtseva ◽  
O A Kabov

Abstract This work investigates the dynamics of the contact line during the propagation of a dry spot in a water layer on a solid substrate. The substrate is coated with fluoropolymer by using a hot wire chemical vapor deposition method. The dry spot is generated using a thermocapillary mechanism caused by the heating of the substrate from below by the laser. By analyzing schlieren images, the dependence of the velocity of the contact line during the propagation of a dry spot was obtained for various initial thicknesses of liquid films.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Eghbalahmadi ◽  
Parissa Khadiv-Parsi ◽  
Seyed Mohammad Ali Mousavian ◽  
Mohammad Hosein Eghbal Ahmadi

Abstract In this study, numerical simulations were carried out to investigate the separation of the helium-argon gas mixture by thermal diffusion column. This research determined the significant parameters and their effects on the process performance. Effects of feed flow rate, cut ratio, and hot wire temperature in a 950 mm height column with an inner tube of 9.5 mm radius were examined through the simulation of the thermal diffusion column. For minimizing the number of simulations and obtaining the optimum operating conditions, response surface methodology (RSM) was used. Analysis of separative work unit (SWU) values as a target function for helium-argon separation clearly showed that the maximum amount of SWU in thermal diffusion column was achieved, when hot wire temperature increased as large as technically possible, and the feed rate and cut ratio were equal to 55 Standard Cubic Centimeters per Minute (SCCM) and 0.44, respectively. Finally, the SWU value in optimum conditions was compared with the experimental data. Results illustrated that the experimental data were in good agreement with simulation data with an accuracy of about 90%.


2021 ◽  
Vol 6 (6) ◽  
pp. 1341-1361
Author(s):  
Frederik Berger ◽  
David Onnen ◽  
Gerard Schepers ◽  
Martin Kühn

Abstract. The dynamic inflow effect denotes the unsteady aerodynamic response to fast changes in rotor loading due to a gradual adaption of the wake. This does lead to load overshoots. The objective of the paper was to increase the understanding of that effect based on pitch step experiments on a 1.8 m diameter model wind turbine, which are performed in the large open jet wind tunnel of ForWind – University of Oldenburg. The flow in the rotor plane is measured with a 2D laser Doppler anemometer, and the dynamic wake induction factor transients in axial and tangential direction are extracted. Further, integral load measurements with strain gauges and hot-wire measurements in the near and close far wake are performed. The results show a clear gradual decay of the axial induction factors after a pitch step, giving the first direct experimental evidence of dynamic inflow due to pitch steps. Two engineering models are fitted to the induction factor transients to further investigate the relevant time constants of the dynamic inflow process. The radial dependency of the axial induction time constants as well as the dependency on the pitch direction is discussed. It is confirmed that the nature of the dynamic inflow decay is better described by two rather than only one time constant. The dynamic changes in wake radius are connected to the radial dependency of the axial induction transients. In conclusion, the comparative discussion of inductions, wake deployment and loads facilitate an improved physical understanding of the dynamic inflow process for wind turbines. Furthermore, these measurements provide a new detailed validation case for dynamic inflow models and other types of simulations.


Sign in / Sign up

Export Citation Format

Share Document