Review of “MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows”

2017 ◽  
Author(s):  
Elie Bou-Zeid
2017 ◽  
Vol 10 (8) ◽  
pp. 3145-3165 ◽  
Author(s):  
Chiel C. van Heerwaarden ◽  
Bart J. H. van Stratum ◽  
Thijs Heus ◽  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
...  

Abstract. This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.


2017 ◽  
Author(s):  
Chiel C. van Heerwaarden ◽  
Bart J. H. van Stratum ◽  
Thijs Heus ◽  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
...  

Abstract. This paper describes MicroHH 1.0, a new and open source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation, but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parametrizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parametrizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximation, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32,768 processes. The Graphical Processing Unit-enabled version of the code reaches speedups of more than an order of magnitude with respect to the conventional code for a variety of cases.


Author(s):  
V Michelassi ◽  
J. G. Wissink ◽  
W Rodi

The unsteady periodic flow in a low-pressure (LP) prismatic turbine vane with incoming wakes is computed by direct numerical simulation (DNS), large eddy simulation (LES) and unsteady Reynolds-averaged Navier—Stokes simulations (URANSs). The results are compared with existing measurements at a Reynolds number Re = 5.18 × 104 which reveal the presence of a large unsteady stalled region on the suction side. Both DNS and LES suggest that the boundary layer separates while being still laminar, with subsequent turbulent reattachment. Several URANSs with and without a transition model and a constraint on the turbulence time-scale designed to prevent excessive production in the stagnation region are analysed and compared with the DNS and LES. The useful information provided by DNS and LES has made it possible to improve the results of the URANSs, which ensure a fair reproduction of the flow, especially in terms of blade load and losses, although they partly fail to detail the complex wake—boundary layer interaction in the separated flow region.


Sign in / Sign up

Export Citation Format

Share Document