A quasi-linear theory for rotating flow over topography. Part 2. Beta-plane annulus

1981 ◽  
Vol 103 (-1) ◽  
pp. 297 ◽  
Author(s):  
Michael K. Davey
1980 ◽  
Vol 99 (2) ◽  
pp. 267-292 ◽  
Author(s):  
Michael K. Davey

Steady rotating flow over topography in a periodic channel is examined, with emphasis on the interaction of waves, topography and mean flow. A simple quasi-linear theory is presented that features an implicit equation relating the net zonal flow to the forcing and topography. A good description of the dynamics is obtained, even when resonant Rossby waves appear. Multiple solutions for given external parameters are predicted in some cases, and confirmed by comparison with a fully nonlinear numerical model.The nonlinear results also indicate that the zonally averaged shear can be important when topographic effects or Rossby numbers are large. With this factor taken into account the theory gives good agreement with the fully nonlinear model, as long as eddy–eddy interactions are minor.The theory is relevant to the dynamics of planetary waves in the atmosphere, and may also be applied to some oceanic problems.


Author(s):  
Vladimir Zeitlin

After analysis of general properties of horizontal motion in primitive equations and introduction of principal parameters, the key notion of geostrophic equilibrium is introduced. Quasi-geostrophic reductions of one- and two-layer rotating shallow-water models are obtained by a direct filtering of fast inertia–gravity waves through a choice of the time scale of motions of interest, and by asymptotic expansions in Rossby number. Properties of quasi-geostrophic models are established. It is shown that in the beta-plane approximations the models describe Rossby waves. The first idea of the classical baroclinic instability is given, and its relation to Rossby waves is explained. Modifications of quasi-geostrophic dynamics in the presence of coastal, topographic, and equatorial wave-guides are analysed. Emission of mountain Rossby waves by a flow over topography is demonstrated. The phenomena of Kelvin wave breaking, and of soliton formation by long equatorial and topographic Rossby waves due to nonlinear effects are explained.


2009 ◽  
Vol 21 (6) ◽  
pp. 066601 ◽  
Author(s):  
J. G. Esler ◽  
O. J. Rump ◽  
E. R. Johnson

2021 ◽  
Author(s):  
Varvara Zemskova ◽  
Nicolas Grisouard

<p>Linear theory for steady stratified flow over topography sets the range for topographic wavenumbers over which freely propagating internal waves are generated, whose radiation and breaking contribute to energy dissipation in the interior. Previous work demonstrated that dissipation rates can be enhanced over large-scale topographies with wavenumbers outside of such radiative range. We conduct idealized rotating 3D numerical simulations of steady stratified flow over 1D topography and quantify kinetic energy dissipation. We vary topographic width, which determines whether the obstacle is within the radiative range, and height, which measures the degree of flow non-linearity. Simulations with certain width and height combinations develop periodicity in wave breaking and energy dissipation, which is enhanced in the domain interior. Dissipation rates for tall and wide non-radiative topography are comparable to those of radiative topography, even away from the bottom, which is important for the ocean where wider hills also tend to be taller. </p>


1991 ◽  
Vol 161 (9) ◽  
pp. 201-209 ◽  
Author(s):  
Polina S. Landa ◽  
V.F. Marchenko

2020 ◽  
Vol 23 (9) ◽  
pp. 837-850
Author(s):  
Zaheer Abbas ◽  
Amar Rauf ◽  
Sabir Ali Shehzad
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document