Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow

1984 ◽  
Vol 139 ◽  
pp. 261-290 ◽  
Author(s):  
D. J. Jeffrey ◽  
Y. Onishi

Two unequal rigid spheres are immersed in unbounded fluid and are acted on by externally applied forces and couples. The Reynolds number of the flow around them is assumed to be small, with the consequence that the hydrodynamic interactions between the spheres can be described by a set of linear relations between, on the one hand, the forces and couples exerted by the spheres on the fluid and, on the other, the translational and rotational velocities of the spheres. These relations may be represented completely by either a set of 10 resistance functions or a set of 10 mobility functions. When non-dimensionalized, each function depends on two variables, the non-dimensionalized centre-to-centre separation s and the ratio of the spheres’ radii λ. Two expressions are given for each function, one a power series in s−1 and the other an asymptotic expression valid when the spheres are close to touching.

1979 ◽  
Vol 46 (3) ◽  
pp. 510-512 ◽  
Author(s):  
M. B. Stewart ◽  
F. A. Morrison

Low Reynolds number flow in and about a droplet is generated by an electric field. Because the creeping flow solution is a uniformly valid zeroth-order approximation, a regular perturbation in Reynolds number is used to account for the effects of convective acceleration. The flow field and resulting deformation are predicted.


AIAA Journal ◽  
1972 ◽  
Vol 10 (10) ◽  
pp. 1381-1382
Author(s):  
CLARENCE W. KITCHENS ◽  
CLARENCE C. BUSH

2010 ◽  
Vol 39 (9) ◽  
pp. 1529-1541 ◽  
Author(s):  
Shengyi Wang ◽  
Derek B. Ingham ◽  
Lin Ma ◽  
Mohamed Pourkashanian ◽  
Zhi Tao

Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
Hossein Nejat Pishkenari ◽  
Matin Mohebalhojeh

Abstract Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a triangular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet. Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths, we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations of the actuators length.


Sign in / Sign up

Export Citation Format

Share Document