three sphere
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Bruno Balthazar ◽  
Amit Giveon ◽  
David Kutasov ◽  
Emil J. Martinec

Abstract We propose a new AdS3/CFT2 duality, in which the bulk string theory has a target spacetime AdS3 times a squashed three-sphere $$ {\mathbbm{S}}_{\flat}^3 $$ S ♭ 3 , and the dual CFT2 is a symmetric product of sigma models on ℝϕ×$$ {\mathbbm{S}}_{\flat}^3 $$ S ♭ 3 , deformed by a ϕ-dependent ℤ2 twist operator. The duality maps the asymptotic region of AdS3 to the region ϕ → ∞, where the twist interaction in the CFT2 turns off. The AdS3 backgrounds in question have RAdS< ℓs, and so lie on the string side of the string/black hole correspondence transition. As a consequence, the high energy density of states consists of a string gas in AdS3 rather than an ensemble of BTZ black holes. This property allows us to derive the dual CFT2 by a systematic analysis of the worldsheet string theory on AdS3.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Teerthal Patel ◽  
Tanmay Vachaspati

Abstract The vacuum manifold of the standard electroweak model is a three-sphere when one considers homogeneous Higgs field configurations. For inhomogeneous configurations we argue that the vacuum manifold is the Hopf fibered three sphere and that this viewpoint leads to general criteria to detect electroweak monopoles and Z-strings. We extend the Kibble mechanism to study the formation of electroweak monopoles and strings during electroweak symmetry breaking. The distribution of magnetic monopoles produces magnetic fields that have a spectrum Bλ ∝ λ−2, where λ is a smearing length scale. Even as the magnetic monopoles annihilate due to the confining Z-strings, the magnetic field evolves with the turbulent plasma and may be relevant for cosmological observations.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012004
Author(s):  
Georgios Itsios ◽  
Pantelis Panopoulos ◽  
Konstantinos Sfetsos

Abstract We discuss the perturbative stability of an AdS 3 non-supersymmetric solution of the type-IIB supergravity, whose internal geometry is given by the direct product of a round three-sphere and two λ-deformed factors based on the coset CFTs SU(2)/U(1) and SL(2, ℝ)/SO(1,1). This solution admits a two-dimensional parametric space spanned by the inverse radius of the AdS 3 and the deformation parameter λ. Reality of the background imposes restrictions on the values of these parameters. Further limitations on the values of the inverse radius and the parameter λ arise after requiring the stability of the solution. Our approach relies on the study of scalar perturbations around the AdS 3 vacuum of a three-dimensional effective theory. This reveals the existence of a region in the parametric space where the Breitenlohner-Freedman bound is not violated.


Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
Hossein Nejat Pishkenari ◽  
Matin Mohebalhojeh

Abstract Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a triangular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet. Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths, we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations of the actuators length.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Dongmin Gang ◽  
Sungjoon Kim ◽  
Kimyeong Lee ◽  
Myungbo Shim ◽  
Masahito Yamazaki

Abstract We propose a novel procedure of assigning a pair of non-unitary topological quantum field theories (TQFTs), TFT±[$$ \mathcal{T} $$ T rank 0], to a (2+1)D interacting $$ \mathcal{N} $$ N = 4 superconformal field theory (SCFT) $$ \mathcal{T} $$ T rank 0 of rank 0, i.e. having no Coulomb and Higgs branches. The topological theories arise from particular degenerate limits of the SCFT. Modular data of the non-unitary TQFTs are extracted from the supersymmetric partition functions in the degenerate limits. As a non-trivial dictionary, we propose that F = maxα (− log|$$ {S}_{0\alpha}^{\left(+\right)} $$ S 0 α + |) = maxα (− log|$$ {S}_{0\alpha}^{\left(-\right)} $$ S 0 α − |), where F is the round three-sphere free energy of $$ \mathcal{T} $$ T rank 0 and $$ {S}_{0\alpha}^{\left(\pm \right)} $$ S 0 α ± is the first column in the modular S-matrix of TFT±. From the dictionary, we derive the lower bound on F, F ≥ − log $$ \left(\sqrt{\frac{5-\sqrt{5}}{10}}\right) $$ 5 − 5 10 ≃ 0.642965, which holds for any rank 0 SCFT. The bound is saturated by the minimal $$ \mathcal{N} $$ N = 4 SCFT proposed by Gang-Yamazaki, whose associated topological theories are both the Lee-Yang TQFT. We explicitly work out the (rank 0 SCFT)/(non-unitary TQFTs) correspondence for infinitely many examples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benoit Estienne ◽  
Blagoje Oblak ◽  
Jean-Marie Stéphan

The gapless modes on the edge of four-dimensional (4D) quantum Hall droplets are known to be anisotropic: they only propagate in one direction, foliating the 3D boundary into independent 1D conduction channels. This foliation is extremely sensitive to the confining potential and generically yields chaotic flows. Here we study the quantum correlations and entanglement of such edge modes in 4D droplets confined by harmonic traps, whose boundary is a squashed three-sphere. Commensurable trapping frequencies lead to periodic trajectories of electronic guiding centers; the corresponding edge modes propagate independently along S^1S1 fibers, forming a bundle of 1D conformal field theories over a 2D base space. By contrast, incommensurable frequencies produce quasi-periodic, ergodic trajectories, each of which covers its invariant torus densely; the corresponding correlation function of edge modes has fractal features. This wealth of behaviors highlights the sharp differences between 4D Hall droplets and their 2D peers; it also exhibits the dependence of 4D edge modes on the choice of trap, suggesting the existence of observable bifurcations due to droplet deformations.


Author(s):  
Giovanni Bellettini ◽  
Maurizio Paolini ◽  
Yi-Sheng Wang
Keyword(s):  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Antonio Amariti ◽  
Marco Fazzi ◽  
Alessia Segati

Abstract We study the superconformal index of 4d $$ \mathcal{N} $$ N = 4 USp(2Nc) and SO(Nc) SYM from a matrix model perspective. We focus on the Cardy-like limit of the index. Both in the symplectic and orthogonal case the index is dominated by a saddle point solution which we identify, reducing the calculation to a matrix integral of a pure Chern-Simons theory on the three-sphere. We further compute the subleading logarithmic corrections, which are of the order of the center of the gauge group. In the USp(2Nc) case we also study other subleading saddles of the matrix integral. Finally we discuss the case of the Leigh-Strassler fixed point with SU(Nc) gauge group, and we compute the entropy of the dual black hole from the Legendre transform of the entropy function.


Sign in / Sign up

Export Citation Format

Share Document