Agenesis of the cervical internal carotid artery

1989 ◽  
Vol 103 (7) ◽  
pp. 707-709 ◽  
Author(s):  
T. Nishimura ◽  
T. Takimoto ◽  
M. Kamide ◽  
S. Ishikawa ◽  
R. Umeda

AbstractTotal or segmental agenesis of the internal carotid artery is a rare anomaly. The cervical portion of the internal carotid artery was absent in the right side of the patient who was carried out radical surgery due to recurrent oropharyngeal cancer. Post-operative venous digital subtraction angiography revealed that the remaining intracranial portion of the internal carotid artery was normally patent and supplied blood flow via ipsilateral external carotid artery. Otolaryngologist-Head and Neck surgeon should know such a vascular anomaly and avoid a disastrous result on dividing external carotid artery.

2012 ◽  
Vol 19 (01) ◽  
pp. 137-140
Author(s):  
RAVIKANT SHARMA ◽  
GAURAV AGNIHOTRI

An unusual case of situs inversus was observed during routine postmortem of a 60 year old male subject at Government medicalcollege, Amritsar, Punjab, India. On the right side the common carotid artery was found to be absent. The right external carotid artery arosedirectly from the arch of aorta. The left internal carotid artery had a wide diameter and bifurcated . The right subdivision crossed overcompensating for absent right internal carotid artery. The compensation of absent internal carotid artery in situs inversus makes present caseunique and such variation has thus far never been reported in literature.The ontogeny and clinical implications of the variation have beendiscussed.


2008 ◽  
Vol 62 (suppl_5) ◽  
pp. ONS363-ONS370 ◽  
Author(s):  
Yusuf Izci ◽  
Roham Moftakhar ◽  
Mark Pyle ◽  
Mustafa K. Basşkaya

Abstract Objective: Access to the high cervical internal carotid artery (ICA) is technically challenging for the treatment of lesions in and around this region. The aims of this study were to analyze the efficacy of approaching the high cervical ICA through the retromandibular fossa and to compare preauricular and postauricular incisions. In addition, the relevant neural and vascular structures of this region are demonstrated in cadaveric dissections. Methods: The retromandibular fossa approach was performed in four arterial and venous latex-injected cadaveric heads and necks (eight sides) via preauricular and postauricular incisions. This approach included three steps: 1) sternocleidomastoid muscle dissection; 2) transparotid dissection; and 3) removal of the styloid apparatus and opening of the retromandibular fossa to expose the cervical ICA with the internal jugular vein along with Cranial Nerves X, XI, and XII. Results: The posterior belly of the digastric muscle and the styloid muscles were the main obstacles to reaching the high cervical ICA. The high cervical ICA was successfully exposed through the retromandibular fossa in all specimens. In all specimens, the cervical ICA exhibited an S-shaped curve in the retromandibular fossa. The external carotid artery was located more superficially than the ICA in all specimens. The average length of the ICA in the retromandibular fossa was 6.8 cm. Conclusion: The entire cervical ICA can be exposed via the retromandibular fossa approach without neural and vascular injury by use of meticulous dissection and good anatomic knowledge. Mandibulotomy is not necessary for adequate visualization of the high cervical ICA.


2014 ◽  
Vol 65 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Santanu Chakraborty ◽  
Reem A. Adas

Purpose Neurologic determination of death or brain death is primarily a clinical diagnosis. This must respect all guarantees required by law and should be determined early to avoid unnecessary treatment and allow organ harvesting for transplantation. Ancillary testing is used in situations in which clinical assessment is impossible or confounded by other factors. Our purpose is to determine the utility of dynamic computed tomographic angiography (dCTA) as an ancillary test for diagnosis of brain death. Materials and Methods We retrospectively reviewed 13 consecutive patients with suspected brain death in the intensive care unit who had dCTA. Contrast appearance timings recorded from the dCTA data were compared to findings from 15 controls selected from patients who presented with symptoms of acute stroke but showed no stroke in follow-up imaging. Results The dCTA allows us to reliably assess cerebral blood flow and to record time of individual cerebral vessels opacification. It also helps us to assess the intracranial flow qualitatively against the flow in extracranial vessels as a reference. We compared the time difference between enhancement of the external and internal carotid arteries and branches. In all patients who were brain dead, internal carotid artery enhancement was delayed, which occurred after external carotid artery branches were opacified. Conclusion In patients with suspected brain death, dCTA reliably demonstrated the lack of cerebral blood flow, with extracranial circulation as an internal reference. Our initial results suggest that inversion of time of contrast appearance between internal carotid artery and external carotid artery branches at the skull base could predict a lack of distal intracranial flow.


Author(s):  
David Jordan ◽  
Louise Mawn ◽  
Richard L. Anderson

The anatomy of the orbital vascular bed is complex, with tremendous individual variation. The main arterial supply to the orbit is from the ophthalmic artery, a branch of the internal carotid artery. The external carotid artery normally contributes only to a small extent. However, there are a number of orbital branches of the ophthalmic artery that anastomose with adjacent branches from the external carotid artery, creating important anastomotic communications between the internal and external carotid arterial systems. The venous drainage of the orbit occurs mainly via two ophthalmic veins (superior and inferior) that extend to the cavernous sinus, but there are also connections with the pterygoid plexus of veins, as well as some more anteriorly through the angular vein and the infraorbital vein to the facial vein. A working knowledge of the orbital vasculature and lymphatic systems is important during orbital, extraocular, or ocular surgery. Knowing the anatomy of the blood supply helps one avoid injury to the arteries and veins during operative procedures within the orbit or the eyelid. Inadvertent injury to the vasculature not only distorts the anatomy and disrupts a landmark but also prolongs the surgery and might compromise blood flow to an important orbital or ocular structure. Upon entering the cranium, the internal carotid artery passes through the petrous portion of the temporal bone in the carotid canal and enters the cavernous sinus and middle cranial fossa through the superior part of the forame lacerum . It proceeds forward in the cavernous sinus with the abducens nerve along its side. There it is surrounded by sympathetic nerve fibers (the carotid plexus ) derived from the superior cervical ganglion. It then makes an upward S-shaped turn to form the carotid siphon , passing just medial to the oculomotor, trochlear, and ophthalmic nerves (V1). After turning superiorly in the anterior cavernous sinus, the carotid artery perforates the dura at the medial aspect of the anterior clinoid process and turns posteriorly, inferior to the optic nerve.


Sign in / Sign up

Export Citation Format

Share Document