average length
Recently Published Documents





2022 ◽  
Vol 3 (1) ◽  
Cheng Liu ◽  
Zheng Yao ◽  
Dun Wang ◽  
Weiguang Gao ◽  
Tianxiong Liu ◽  

AbstractThe Precise Point Positioning (PPP) service of BeiDou-3 Navigation Satellite System (BDS-3) is implemented on its Geostationary Earth Orbit (GEO) satellites. However, its signal design is limited by the actual power of satellite and other conditions. Furthermore, the design needs to fully consider the compatibility of different service phases. Starting from the actual state of the BDS-3 GEO satellite, this paper studies the multiplexing modulation of the BDS PPP service signal that is based on the Asymmetric Constant Envelope Binary Offset Carrier (ACE-BOC) technique and proposes several feasible schemes for this signal. Comparison and optimization of these techniques are made from the aspects of transmission efficiency, multiplexing efficiency, and service forward compatibility. Based on the Type-III ACE-BOC multiplexing modulation technique, phase rotation and intermodulation reconstruction techniques are proposed to suppress the intermodulation interference issue. Finally, a signal based on improved ACE-BOC multiplexing is designed. The quality of the proposed signal was continuously monitored and tested using large-diameter antennas. The evaluation results show that the power spectrum deviation of the signal is 0.228 dB, the correlation loss is 0.110 dB, the S-curve slope deviation is 1.558% on average, the average length difference between the positive/negative chip and the ideal chip is only 0.0006 ns, and the coherence between the carrier and the pseudo code is 0.082°. All quality indicators are satisfactory, indicating that the proposed signal multiplexing modulation technique is an ideal solution that meets all the requirements of the design constraints, and can achieve efficient information broadcasting and forward compatibility of the BDS PPP service.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 184
Tae-Heon Kim ◽  
Young-Mi Yoon ◽  
Jin-Cheon Park ◽  
Jong-Ho Park ◽  
Kyong-Ho Kim ◽  

Cultivated oat (Avena sativa L.) is an important cereal crop that has captured interest worldwide due to its nutritional properties and associated health benefits. Despite this interest, oat has lagged behind other cereal crops in genome studies and the development of DNA markers due to its large and complex genome. RNA-Seq technology has been widely used for transcriptome analysis, functional gene study, and DNA marker development. In this study, we performed the transcriptome sequencing of 10 oat varieties at the seedling stage using the Illumina platform for the development of DNA markers. In total, 31,187,392~41,304,176 trimmed reads (an average of 34,322,925) were generated from 10 oat varieties. All of the trimmed reads of these varieties were assembled and generated, yielding a total of 128,244 assembled unigenes with an average length of 1071.7 bp and N50 of 1752 bp. According to gene ontology (GO) analysis, 30.7% of unigenes were assigned to the “catalytic activity” of the parent term in the molecular function category. Of the 1273 dCAPS markers developed using 491 genotype-specific SNPs, 30 markers exhibiting polymorphism in 28 oat varieties were finally selected. The transcriptome data of oat varieties could be used for functional studies about the seedling stage of oat and information about sequence variations in DNA marker development. These 30 dCAPS markers will be utilized for oat genetic analysis, cultivar identification, and breeders’ rights protection.

Plant Disease ◽  
2022 ◽  
Peng Cao ◽  
Yuhui Fang ◽  
Zikui Zheng ◽  
Xia Han ◽  
Huixi Zou ◽  

Dendrobium officinale Kimura L., an endangered orchid plant, is a rare and precious Chinese herb and widely used to prepare Chinese traditional medicine (Zheng et al. 2005). In August 2021, significant indications of an unknown leaf spot disease were observed on greenhouse-grown D. officinale in Yueqing of Wenzhou (28.39°N, 121.04°E), Zhejiang Province, China, the main producing location of this orchid plant. Approximately twenty percent of plants surveyed showed typical infection symptoms. Initially, the symptoms appeared as small, circular black spots. As the disease developed, the center of the lesions was sunken with a black border. To determine the causal agent, 10 symptomatic plant samples were collected and all pieces from symptomatic plant leaves were used for isolating pathogen. Tissues between healthy and necrotic area were cut into pieces (5 × 5 mm, n=10), disinfected with 10% sodium hypochlorite for 1 minute, rinsed 3 times with sterile water, and dried on sterile tissue. Samples were then placed on potato dextrose agar medium (PDA) for 1 piece per plate, and incubated at 25℃ in a dark biochemical incubator. After 3 days, hyphal tips growing from the disinfected tissues were individually transferred to new PDA plates and incubated at 25℃ in the dark. Twelve same fungal isolates were obtained from all symptomatic leave fragments, then DDO11 was chosen as a representative isolate for further study. The colonies showed white aerial mycelium after 5 days culture at 25°C on PDA. Black viscous acervuli appeared and scattered on the surface of the colony after 8-12 days culture. Conidia were spindle shape, five cells, four septa, average 29.3 × 8.5 μm (n = 30; length × width). The apical and basal cells were lighter in color, and most of them were hyaline. The middle three cells were darker in color, and mostly brown. There are 2 to 4 colorless and transparent unbranched accessory filaments at the top, 32.5 µm in average length, and the basal cell has a small appendage, 9.2 µm in average length, n=30. For fungal identification to species level, Internal transcribed spacer (ITS) region, β-tubulin gene (TUB2) and translation elongation factor-1α (TEF-1α) were amplified (Qiu et al. 2020), respectively. The ITS, TUB2 and TEF-1α gene sequences of the representative isolate DDO11 were deposited in NCBI GenBank nucleotide database with accession numbers OK631881, OK655895 and OK655896, respectively. BLASTn analysis respectively showed 100%, 100% and 99.6% nucleotide sequence identity with Neopestalotiopsis clavispora strain accessions MG729690, MG740736 and MH423940, which indicated that the pathogen belonged N. clavispora. A maximum-likelihood phylogenetic analysis based on multi-locus sequence (ITS, TUB2, and TEF-1α) using MEGA X showed the similar result (Kumar et al. 2018). To verify pathogenicity, thirty 1-year-old healthy D. officinale plants of cultivar Yandang1 were used for inoculation tests. Spores of N. clavispora DDO11 were produced on PDA for 7 days at 28°C and washed with sterile distilled water, and the concentrations were adjusted to 1 × 106 spores/ml using a hemocytometer. Fifteen surface disinfected healthy plants were inoculated by spraying the suspension (2 ml, 1 × 106 spores/ml) and covered with plastic bags for 24 h, and another 15 plants treated with sterile distilled water were used as control. The plants were placed in a humidified chamber (>95% relative humidity) at 25°C for 48 h after inoculation and kept in a growth chamber (Kiangnan, China) at 25°C with 12-h day/night cycle for 8 days (Cao et al. 2019). All inoculated leaves showed symptoms identical to those observed in the field. No disease occurred on the controls. The Neopestalotiopsis isolate was reisolated from the symptomatic leaves, and species identification was confirmed by the morphological and molecular method described above. N. clavispora has been reported to cause diseases on a variety of plants all over the world, such as strawberry (Gilardi et al. 2019), blue berry (Shi et al. 2021), Syzygium cumini (Banerjee et al. 2020), Macadamia (Qiu et al. 2020), and so on. To the best of our knowledge, this is the first report of N. clavispora causing leaf spot on D. officinale in China. This report will help us to recognize the leaf spot disease of D. officinale and establish a foundation for future studies on N. clavispora to address effective management strategies.

Natividad Algado-Sellés ◽  
Javier Mira-Bernabeu ◽  
Paula Gras-Valentí ◽  
Pablo Chico-Sánchez ◽  
Natali Juliet Jiménez-Sepúlveda ◽  

Among healthcare-associated infections, surgical site infections (SSIs) are the most frequent in Spain. The aim of this work was to estimate the costs of SSIs in patients who underwent a cholecystectomy at the Hospital General Universitario de Alicante (Spain) between 2012–2017. This was a prospective observational cohort study. The Active Epidemiological Surveillance Program at our hospital recorded all the cholecystectomies performed. Risk factors associated with the development of SSIs were determined by multivariate analysis and two homogeneous comparison groups were obtained by using the propensity score. The number of extra days of hospital stay were recorded for patients with an SSI and with the cost per hospitalised day data, the additional cost attributed to SSIs was calculated. A total of 2200 cholecystectomies were considered; 110 patients (5.0%) developed an SSI. The average length of hospital stay was 5.6 days longer among patients with an SSI. The cost per SSI was EUR 1890.60 per patient, with the total cost for this period being EUR 207,961.60. SSIs after cholecystectomy lead to a prolongation of hospital stay and an increase in economic costs. It is essential to implement infection surveillance and control programs to reduce SSIs, improve patient safety, and reduce economic burden.

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Kunyu Teng ◽  
Hongke Cai ◽  
Xiubin Sun ◽  
Quanliang Chen

This paper examines the basic geometric and physical characteristics of precipitation clouds over the Tibetan Plateau, based on the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data from 1998 to 2015, using the minimum bounding rectangle (MBR) method. The results show that about 60% of the precipitation clouds occur with a scale of approximately 18 km (length) and 15 km (width), and the proportion of precipitation clouds with a length longer than 100 km and a width wider than 90 km is less than 1%. Most of the precipitation cloud exhibits a shape between square and long strips in the horizontal direction and lanky in the vertical direction. The average rainfall intensity of precipitation clouds is between 0.5 and 6 mm h−1. The average length and width of precipitation clouds show a logarithmic, linear relationship. The distribution of raindrops in precipitation clouds is relatively compact. With the expansion of the area, the precipitation clouds gradually become squatty. The relationship between physical and geometric parameters of precipitation clouds shows that with the precipitation cloud area expanding, the average rainfall rate of precipitation clouds also increases. Heavy convective rainfall is more likely to occur in larger precipitation clouds. For the precipitation clouds of the same size, the area fraction and contribution of convective precipitation are lower than that of stratiform precipitation.

2022 ◽  
Vol 21 (1) ◽  
Sophia Abner ◽  
Clare L. Gillies ◽  
Sharmin Shabnam ◽  
Francesco Zaccardi ◽  
Samuel Seidu ◽  

Abstract Objective To assess trends in primary and specialist care consultation rates and average length of consultation by cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), or cardiometabolic multimorbidity exposure status. Methods Observational, retrospective cohort study used linked Clinical Practice Research Datalink primary care data from 01/01/2000 to 31/12/2018 to assess consultation rates in 141,328 adults with newly diagnosed T2DM, with or without CVD. Patients who entered the study with either a diagnosis of T2DM or CVD and later developed the second condition during the study are classified as the cardiometabolic multimorbidity group. Face to face primary and specialist care consultations, with either a nurse or general practitioner, were assessed over time in subjects with T2DM, CVD, or cardiometabolic multimorbidity. Changes in the average length of consultation in each group were investigated. Results 696,255 (mean 4.9 years [95% CI, 2.02–7.66]) person years of follow up time, there were 10,221,798 primary and specialist care consultations. The crude rate of primary and specialist care consultations in patients with cardiometabolic multimorbidity (N = 11,881) was 18.5 (95% CI, 18.47–18.55) per person years, 13.5 (13.50, 13.52) in patients with T2DM only (N = 83,094) and 13.2 (13.18, 13.21) in those with CVD (N = 57,974). Patients with cardiometabolic multimorbidity had 28% (IRR 1.28; 95% CI: 1.27, 1.31) more consultations than those with only T2DM. Patients with cardiometabolic multimorbidity had primary care consultation rates decrease by 50.1% compared to a 45.0% decrease in consultations for those with T2DM from 2000 to 2018. Specialist care consultation rates in both groups increased from 2003 to 2018 by 33.3% and 54.4% in patients with cardiometabolic multimorbidity and T2DM, respectively. For patients with T2DM the average consultation duration increased by 36.0%, in patients with CVD it increased by 74.3%, and in those with cardiometabolic multimorbidity it increased by 37.3%. Conclusions Annual primary care consultation rates for individuals with T2DM, CVD, or cardiometabolic multimorbidity have fallen since 2000, while specialist care consultations and average consultation length have both increased. Individuals with cardiometabolic multimorbidity have significantly more consultations than individuals with T2DM or CVD alone. Service redesign of health care delivery needs to be considered for people with cardiometabolic multimorbidity to reduce the burden and health care costs.

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Chang Pyo Hong ◽  
Chang-Kug Kim ◽  
Dong Jin Lee ◽  
Hee Jeong Jeong ◽  
Yi Lee ◽  

Abstract Background Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. Results To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. Conclusions Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.

2022 ◽  
Vol 12 (1) ◽  
Mingxia Du ◽  
Jinming Wang ◽  
Faqin Dong ◽  
Zhaojia Wang ◽  
Feihua Yang ◽  

AbstractPhosphogypsum (PG) is a massive industrial solid waste. In this paper, PG was purified by flotation method, and α-hemihydrate gypsum (α-HH) was prepared by the autoclaving method. The morphology of α-HH was adjusted by adding different doses of Maleic acid and Aluminium sulfate. The results showed that after flotation purification, the impurity content in PG was significantly reduced, the soluble phosphorus content decreased from 0.48 to 0.07%, the PG purity increased from 73.12 to 94.37%, and the PG whiteness risen from 19.4 to 40.5. Then the performance of α-HH prepared from PG before and after purification was compared. Fixing the amount of aluminium sulfate at 0.2 wt%, the reaction temperature at 140 °C, and the reaction time at 120 min, the average length/diameter ratio of α-HH crystals decreased from 7.2 to 0.6 as the amount of Maleic acid increased from 0 to 0.17 wt%. When the amount of Maleic acid was 0.13 wt%, the α-hemihydrate gypsum reached the best mechanical properties. The mechanical strength of high strength gypsum prepared from PG concentrate was significantly better than that of raw PG, indicating that flotation purification can effectively improve the performance of PG. In this study, a new method of PG purification and resource utilization was proposed.

2022 ◽  
Laura Piho ◽  
Andreas Alexander ◽  
Maarja Kruusmaa

Abstract. Glacier hydrology describes water movement over, through and under glaciers and ice sheets. Water reaching the ice bed influences ice motion and ice dynamical models, therefore requiring a good understanding of glacier hydrology, particularly water pressures and pathways. However, as in situ observations are sparse and methods for direct observations of water pathways and internal pressures are lacking, our understanding of the aforementioned pathways and pressure remains limited. Here, we present a method that allows the reconstruction of planar subsurface water flow paths and spatially reference water pressures. We showcase this method by reconstructing the 2D topology and the water pressure distribution of an englacial channel in Austre Brøggerbreen (Svalbard). The approach uses inertial measurements from submersible sensing drifters and reconstructs the flow path between given start and end coordinates. Validation on a supraglacial channel shows an average length error of 3.9 m (5.3 %). At the englacial channel, the average length error is 107 m (11.6 %) and the average pressure error 3.4 hPa (0.3 %). Our method allows mapping sub- and englacial flow paths and the pressure distribution within, thereby facilitating hydrological model validation. Further, our method also allows the reconstruction of other, previously unexplored, subsurface fluid flow paths.

2022 ◽  
Vol 20 (1) ◽  
Iñaki Permanyer ◽  
Jeroen Spijker ◽  
Amand Blanes

Abstract Background Current measures to monitor population health include indicators of (i) average length-of-life (life expectancy), (ii) average length-of-life spent in good health (health expectancy), and (iii) variability in length-of-life (lifespan inequality). What is lacking is an indicator measuring the extent to which healthy lifespans are unequally distributed across individuals (the so-called ‘healthy lifespan inequality’ indicators). Methods We combine information on age-specific survival with the prevalence of functional limitation or disability in Spain (2014–2017) by sex and level of education to estimate age-at-disability onset distributions. Age-, sex- and education-specific prevalence rates of adult individuals’ daily activities limitations were based on the GALI index derived from Spanish National Health Surveys held in 2014 and 2017. We measured inequality using the Gini index. Results In contemporary Spain, education differences in health expectancy are substantial and greatly exceed differences in life expectancy. The female advantage in life expectancy disappears when considering health expectancy indicators, both overall and across education groups. The highly educated exhibit lower levels of lifespan inequality, and lifespan inequality is systematically higher among men. Our new healthy lifespan inequality indicators suggest that the variability in the ages at which physical daily activity limitations start are substantially larger than the variability in the ages at which individuals die. Healthy lifespan inequality tends to decrease with increasing educational attainment, both for women and for men. The variability in ages at which physical limitations start is slightly higher for women than for men. Conclusions The suggested indicators uncover new layers of health inequality that are not traceable with currently existing approaches. Low-educated individuals tend to not only die earlier and spend a shorter portion of their lives in good health than their highly educated counterparts, but also face greater variation in the eventual time of death and in the age at which they cease enjoying good health—a multiple burden of inequality that should be taken into consideration when evaluating the performance of public health systems and in the elaboration of realistic working-life extension plans and the design of equitable pension reforms.

Sign in / Sign up

Export Citation Format

Share Document