Estimation of tracheostomy tube cuff pressure by pilot balloon palpation

2007 ◽  
Vol 121 (09) ◽  
Author(s):  
C Faris ◽  
E Koury ◽  
J Philpott ◽  
S Sharma ◽  
N Tolley ◽  
...  
2013 ◽  
Vol 123 (8) ◽  
pp. 1884-1888 ◽  
Author(s):  
Nancy Jiang ◽  
Anthony G. Del Signore ◽  
Alfred M. Iloreta ◽  
Benjamin D. Malkin

2017 ◽  
Vol 9 (4) ◽  
pp. 196-199 ◽  
Author(s):  
Farzad Rahmani ◽  
Hassan Soleimanpour ◽  
Ali Zeynali ◽  
Ata Mahmoodpoor ◽  
Kavous Shahsavari Nia ◽  
...  

2019 ◽  
Vol 26 (5) ◽  
pp. 132-138
Author(s):  
Nagappan Ganason ◽  
◽  
Vanitha Sivanaser ◽  
Chian Yong Liu ◽  
Muhammad Maaya ◽  
...  

2015 ◽  
Vol 30 (5) ◽  
pp. 36-38 ◽  
Author(s):  
Nicola Credland

2009 ◽  
Vol 3 (1) ◽  
pp. 169 ◽  
Author(s):  
D. Srinivasan ◽  
S. Halsnad ◽  
R. Anand ◽  
S. Parmar

2020 ◽  
Vol 44 (5) ◽  
pp. 402-408
Author(s):  
Dong Min Kim ◽  
Myung Jun Shin ◽  
Sung Dong Kim ◽  
Yong Beom Shin ◽  
Ho Eun Park ◽  
...  

Objective To determine the patterns of tracheostomy cuff pressure changes with various air inflation amounts in different types of tracheostomy tubes to obtain basic data for appropriately managing longterm tracheostomy.Methods We performed tracheostomy on a 46-year-old male cadaver. Three types of tracheostomy tubes (single-cuffed, double-cuffed, and adjustable flange), divided into 8 different subtypes based on internal tube diameters and cuff diameters, were inserted into the cadaver. Air was inflated into the cuff, and starting with 1 mL air, the cuff pressure was subsequently measured using a manometer.Results For the 7.5 mm/14 mm tracheostomy tube, cuff inflation with 3 mL of air yielded a cuff pressure within the recommended range of 20–30 cmH<sub>2</sub>O. The 7.5 mm/24 mm tracheostomy tube showed adequate cuff pressure at 5 mL of air inflation. Similar values were observed for the 8.0 mm/16 mm and 8.0 mm/27 mm tubes. Double-cuffed tracheostomy cuff pressures (7.5 mm/20 mm and 8.0 mm/20 mm tubes) at 3 mL air inflation had cuff pressures of 18–20 cmH<sub>2</sub>O at both the proximal and distal sites. For the adjustable flange tracheostomy tube, cuff pressure at 6 mL of cuff air inflation was within the recommended range. Maximal cuff pressure was achieved at inflation with almost 14 mL of air, unlike other tube types.Conclusion Various types of tracheostomy tubes showed different cuff pressures after inflation. These values might aid in developing guidelines For patients who undergo tracheostomy and are discharged home without cuff pressure manometers, this standard might be helpful to develop guidelines.


2005 ◽  
Vol 119 (6) ◽  
pp. 461-464 ◽  
Author(s):  
Pushkas Gopalan ◽  
Simon T Browning

The tracheal mucosa is very a delicate structure, and pressure–ischaemia problems following the use of cuffed tracheostomy tubes are well documented. Iatrogenic tracheal stenosis is one of the consequences of mucosal ischaemia and is very difficult to treat. In this study the accuracy of finger-tip tested tracheostomy tube cuff inflation pressure, as judged by consultants and non-consultants, was assessed by comparison with manometric pressure readings. The estimated pressure readings from the consultant group were more accurate than those from the non-consultant group, but a high standard deviation and very big difference between low and high readings in both these groups showed the real extent of the problem. Participants who performed 10 or more tracheostomies a year obtained more accurate results. No definite correlation was observed between the readings and the experience of the participants in otolaryngology or the size of the tube used. The authors recommend that instrumental monitoring of cuff pressure be considered good practice among junior otolaryngologists.


Sign in / Sign up

Export Citation Format

Share Document