A new Agonimia from Europe with a flabelliform thallus

2011 ◽  
Vol 44 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Beata GUZOW-KRZEMIŃSKA ◽  
Josef P. HALDA ◽  
Paweł CZARNOTA

AbstractAgonimia flabelliformis sp. nov. (Verrucariaceae, Ascomycota) is described as a new species from the Czech Republic, Germany and Great Britain. Except for the distinctive, flabelliform to minutely coralloid thallus the species mostly resembles A. allobata. It differs from other related species of Agonimia in the absence of cortical papillae and in ascospore size. The distinctness of the new species and its placement within the genus Agonimia is supported by analyses of mitochondrial small subunit ribosomal DNA sequences from several samples of the taxon, and from many other representatives of Verrucariales including newly sequenced A. repleta and A. vouauxii. Additionally, ITS rDNA sequence data supports the distinction of A. flabelliformis from A. allobata. However, A. allobata was found to be highly variable and relationships, as well as the monophyly of taxa within Agonimia, are still unresolved and need further investigation.

Phytotaxa ◽  
2021 ◽  
Vol 498 (3) ◽  
pp. 177-185
Author(s):  
MILAN ŠPETÍK ◽  
AKILA BERRAF-TEBBAL ◽  
ROBERT POKLUDA ◽  
ALEŠ EICHMEIER

During the investigation of fungal microbiome associated with boxwood in the Czech Republic, samples from Buxus sempervirens L. (Buxaceae) plants were collected and used for isolation. Two fungal strains were proposed as a new species Pyrenochaetopsis kuksensis based on morphology as well as phylogenetic analyses of ITS, LSU, rpb2, and tub2 sequence data. Detailed descriptions and phylogenetic relationships of the new taxon are provided.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yi-Fan Cao ◽  
Hui-Xia Chen ◽  
Yang Li ◽  
Dang-Wei Zhou ◽  
Shi-Long Chen ◽  
...  

Abstract Background The Tibetan antelope Pantholops hodgsonii (Abel) (Artiodactyla: Bovidae) is an endangered species of mammal endemic to the Qinghai-Tibetan Plateau. Parasites and parasitic diseases are considered to be important threats in the conservation of the Tibetan antelope. However, our present knowledge of the composition of the parasites of the Tibetan antelope remains limited. Methods Large numbers of nematode parasites were collected from a dead Tibetan antelope. The morphology of these nematode specimens was observed using light and scanning electron microscopy. The nuclear and mitochondrial DNA sequences, i.e. small subunit ribosomal DNA (18S), large subunit ribosomal DNA (28S), internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (cox1), were amplified and sequenced for molecular identification. Moreover, phylogenetic analyses were performed using maximum likelihood (ML) inference based on 28S and 18S + 28S + cox1 sequence data, respectively, in order to clarify the systematic status of these nematodes. Results Integrated morphological and genetic evidence reveals these nematode specimens to be a new species of pinworm Skrjabinema longicaudatum (Oxyurida: Oxyuridae). There was no intraspecific nucleotide variation between different individuals of S. longicaudatum n. sp. in the partial 18S, 28S, ITS and cox1 sequences. However, a high level of nucleotide divergence was revealed between the new species and its congeners in 28S (8.36%) and ITS (20.3–23.7%) regions, respectively. Molecular phylogenetic results suggest that the genus Skrjabinema should belong to the subfamily Oxyurinae (Oxyuroidea: Oxyuridae), instead of the subfamily Syphaciidae or Skrjabinemiinae in the traditional classification, as it formed a sister relationship to the genus Oxyuris. Conclusions A new species of pinworm Skrjabinema longicaudatum n. sp. (Oxyurida: Oxyuridae) is described. Skrjabinema longicaudatum n. sp. represents the first species of Oxyurida (pinworm) and the fourth nematode species reported from the Tibetan antelope. Our results contribute to the knowledge of the species diversity of parasites from the Tibetan antelope, and clarify the systematic position of the genus Skrjabinema.


2005 ◽  
Vol 37 (3) ◽  
pp. 217-220 ◽  
Author(s):  
Martin KUKWA ◽  
Paul DIEDERICH

The new lichenicolous hyphomycete, Monodictys epilepraria, is described from thalli of several Lepraria species. It is known from the Czech Republic, Great Britain, Lithuania, Poland, Spain and Sweden, and appears to be widespread, but probably much overlooked. The new species is characterized by relatively small, brown, muriform, smooth-walled conidia developing on decolourized patches of the host.


Phytotaxa ◽  
2016 ◽  
Vol 278 (3) ◽  
pp. 273
Author(s):  
ORLANDO NECCHI JR ◽  
TIMOTHY J. ENTWISLE ◽  
CIRO C.Z. BRANCO ◽  
MONICA O. PAIANO

Specimens from southeastern and southern Brazil previously identified as Sheathia arcuata (= Batrachospermum arcuatum) are shown to be members of the recently described genus Nocturama, previously known only from Australia and New Zealand. Morphological and molecular evidence support recognizing the Brazilian specimens as a new species, described here as Nocturama novamundensis, sp. nov. Comparison of DNA sequences of the plastid-encoded ribulose-1,5-bisphosphatecarboxylase–oxygenase large subunit (rbcL) and the nuclear small subunit ribosomal DNA (SSU rDNA) markers showed Nocturama as a well supported clade. The sequence divergences between the new and the type species were high (95-98bp, 7.4–7.6%) for rbcL and 19bp, 1.1% for SSU), and those within each species were extremely low (0-1 bp, 0-0.1%). The new species can be distinguished from N. antipodites in having curved primary fascicles composed of non-‘audouinelloid’ cells (compared to straight primary fascicles with audouinelloid—cylindrical—cells) and in being always dioecious (only rarely is N. antipodites dioecious).


2020 ◽  
Author(s):  
Yi-Fan Cao ◽  
Hui-Xia Chen ◽  
Yang Li ◽  
Dang-Wei Zhou ◽  
Shi-Long Chen ◽  
...  

Abstract Background: The Tibetan antelope Pantholops hodgsonii (Abel) (Artiodactyla: Bovidae) is an endangered species of mammal endemic to the Qinghai-Tibetan Plateau. Parasites and parasitic diseases are considered to be important threats in the conservation of the Tibetan antelope. However, our present knowledge of the composition of the parasites from the Tibetan antelope remains limited. Methods: Large numbers of nematode parasites were collected from a dead Tibetan antelope. The morphology of these nematode specimens was observed using light and scanning electron microscopy. The nuclear and mitochondrial DNA sequences [i.e. small subunit ribosomal DNA (18S), large subunit ribosomal DNA (28S), internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (cox1)] were amplified and sequenced for molecular identification. Moreover, phylogenetic analyses were performed using maximum likelihood (ML) inference based on 28S and 18S + 28S + cox1 sequence data, respectively, in order to clarify the systematic status of these nematodes.Results: Integrated morphological and genetic evidence reveals these nematode specimens to be a new species of pinworm Skrjabinema longicaudatum (Oxyurida: Oxyuridae). There was no intraspecific nucleotide variation between different individuals of S. longicaudatum sp. n. in the partial 18S, 28S, ITS and cox1 sequences. However, a high level of nucleotide divergence was revealed between the new species and its congeners in 28S (8.36%) and ITS (20.3–23.7%) regions, respectively. Molecular phylogenetic results suggest that the genus Skrjabinema should belong to the subfamily Oxyurinae (Oxyuroidea: Oxyuridae), instead of the subfamily Syphaciidae or Skrjabinemiinae in the traditional classification, as it formed a sister relationship to the genus Oxyuris. Conclusions: A new species of pinworm Skrjabinema longicaudatum sp. n. (Oxyurida: Oxyuridae) is described. Skrjabinema longicaudatum sp. n. represents the first species of Oxyurida (pinworm) and the fourth nematode species reported from the Tibetan antelope. Our results contribute to the knowledge of the species diversity of parasites from the Tibetan antelope, and clarify the systematic position of the genus Skrjabinema.


Nematology ◽  
2005 ◽  
Vol 7 (1) ◽  
pp. 59-79 ◽  
Author(s):  
Peter G. Mullin ◽  
Timothy S. Harris ◽  
Thomas O. Powers

Abstract Phylogenetic reconstructions based on 18S rDNA sequence data indicate that Dorylaimida, comprising the suborders Nygolaimina and Dorylaimina, is a monophyletic lineage, but that there is a deep division within Nygolaimina, giving rise to the possibility that Nygolaimina is paraphyletic. A well-supported clade comprising members of the traditional orders Mermithida and Mononchida (including Bathyodontina) forms the sister taxon to the Dorylaimida. Inferred relationships within this clade indicate that Mermithida shares more recent common ancestry with Mononchina than does Bathyodontina. Vertebrate parasites within Dorylaimia (Dioctophymida and Trichinellida) are reconstructed in a sister-taxon relationship with the Mononchida/Dorylaimida lineage. The enigmatic order Isolaimida (represented by Isolaimium) appears to be ancestral to all other Dorylaimia sampled. Expanded taxon sampling for phylogenetic analyses of the subclass raises new possibilities for the reconstruction of hypothetical character states in the common ancestor of Dorylaimia.


2020 ◽  
Author(s):  
Yi-Fan Cao ◽  
Hui-Xia Chen ◽  
Yang Li ◽  
Dang-Wei Zhou ◽  
Shi-Long Chen ◽  
...  

Abstract Background: The Tibetan antelope Pantholops hodgsonii (Abel) (Artiodactyla: Bovidae) is an endangered species of mammal endemic to the Qinghai-Tibetan Plateau. Parasites and parasitic diseases are considered to be important threats in the conservation of the Tibetan antelope. However, our present knowledge of the composition of the parasites from the Tibetan antelope remains limited. Methods: Large numbers of nematode parasites were collected from a dead Tibetan antelope. The morphology of these nematode specimens was observed using light and scanning electron microscopy. The nuclear and mitochondrial DNA sequences [i.e. small subunit ribosomal DNA (18S), large subunit ribosomal DNA (28S), internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (cox1)] were amplified and sequenced for molecular identification. Moreover, phylogenetic analyses were performed using maximum likelihood (ML) inference based on 28S and 18S + 28S + cox1 sequence data, respectively, in order to clarify the systematic status of these nematodes.Results: Integrated morphological and genetic evidence reveals these nematode specimens to be a new species of pinworm Skrjabinema longicaudatum (Oxyurida: Oxyuridae). There was no intraspecific nucleotide variation between different individuals of S. longicaudatum sp. n. in the partial 18S, 28S, ITS and cox1 sequences. However, a high level of nucleotide divergence was revealed between the new species and its congeners in 28S (8.36%) and ITS (20.3–23.7%) regions, respectively. Molecular phylogenetic results suggest that the genus Skrjabinema should belong to the subfamily Oxyurinae (Oxyuroidea: Oxyuridae), instead of the subfamily Syphaciidae or Skrjabinemiinae in the traditional classification, as it formed a sister relationship to the genus Oxyuris. Conclusions: A new species of pinworm Skrjabinema longicaudatum sp. n. (Oxyurida: Oxyuridae) is described. Skrjabinema longicaudatum sp. n. represents the first species of Oxyurida (pinworm) and the fourth nematode species reported from the Tibetan antelope. Our results contribute to the knowledge of the species diversity of parasites from the Tibetan antelope, and clarify the systematic position of the genus Skrjabinema.


2020 ◽  
Author(s):  
Yi-Fan Cao ◽  
Hui-Xia Chen ◽  
Yang Li ◽  
Dang-Wei Zhou ◽  
Shi-Long Chen ◽  
...  

Abstract Background: The Tibetan antelope Pantholops hodgsonii (Abel) (Artiodactyla: Bovidae) is an endangered species of mammal endemic to the Qinghai-Tibetan Plateau. Parasites and parasitic diseases are considered to be important threats in the conservation of the Tibetan antelope. However, our present knowledge of the composition of the parasites of the Tibetan antelope remains limited. Methods: Large numbers of nematode parasites were collected from a dead Tibetan antelope. The morphology of these nematode specimens was observed using light and scanning electron microscopy. The nuclear and mitochondrial DNA sequences, i.e. small subunit ribosomal DNA (18S), large subunit ribosomal DNA (28S), internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (cox1), were amplified and sequenced for molecular identification. Moreover, phylogenetic analyses were performed using maximum likelihood (ML) inference based on 28S and 18S + 28S + cox1 sequence data, respectively, in order to clarify the systematic status of these nematodes.Results: Integrated morphological and genetic evidence reveals these nematode specimens to be a new species of pinworm Skrjabinema longicaudatum (Oxyurida: Oxyuridae). There was no intraspecific nucleotide variation between different individuals of S. longicaudatum n. sp. in the partial 18S, 28S, ITS and cox1 sequences. However, a high level of nucleotide divergence was revealed between the new species and its congeners in 28S (8.36%) and ITS (20.3–23.7%) regions, respectively. Molecular phylogenetic results suggest that the genus Skrjabinema should belong to the subfamily Oxyurinae (Oxyuroidea: Oxyuridae), instead of the subfamily Syphaciidae or Skrjabinemiinae in the traditional classification, as it formed a sister relationship to the genus Oxyuris. Conclusions: A new species of pinworm Skrjabinema longicaudatum n. sp. (Oxyurida: Oxyuridae) is described. Skrjabinema longicaudatum n. sp. represents the first species of Oxyurida (pinworm) and the fourth nematode species reported from the Tibetan antelope. Our results contribute to the knowledge of the species diversity of parasites from the Tibetan antelope, and clarify the systematic position of the genus Skrjabinema.


2015 ◽  
Vol 67 (2) ◽  
pp. 227-231
Author(s):  
Alena Nováková ◽  
Alena Kubátová ◽  
Šárka Valinová ◽  
Vít Hubka ◽  
Miroslav Kolařík

Sign in / Sign up

Export Citation Format

Share Document