scholarly journals Liouvillian solutions of second order differential equation without Fuchsian singularities

1986 ◽  
Vol 103 ◽  
pp. 145-148 ◽  
Author(s):  
Michihiko Matsuda

Consider a homogeneous linear differential equation of the second order whose coefficients are rational functions of the independent variable x over the field C of complex numbers. We assume that the coefficient of the first order derivative vanishes:

Author(s):  
F. W. J. Olver

The zeros of solutions of the general second-order homogeneous linear differential equation are shown to satisfy a certain non-linear differential equation. The method here proposed for their determination is the numerical integration of this differential equation. It has the advantage of being independent of tabulated values of the actual functions whose zeros are being sought. As an example of the application of the method the Bessel functions Jn(x), Yn(x) are considered. Numerical techniques for integrating the differential equation for the zeros of these Bessel functions are described in detail.


Author(s):  
J. C. P. Miller

AbstractIn this paper the principles for the choice of a pair of standard solutions of a homogeneous linear differential equation of the second order, described in an earlier paper (2), are applied to Weber's equation


Matematika ◽  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ahmad Nurul Hadi ◽  
Eddy Djauhari ◽  
Asep K Supriatna ◽  
Muhamad Deni Johansyah

Abstrak. Penentuan solusi sistem persamaan diferensial linear non-homogen orde satu dengan koefisien konstanta, dilakukan dengan mengubah sistem persamaan tersebut menjadi persamaan diferensial linear non homogen tunggal. Dari persamaan diferensial linear non homogen tunggal tersebut kemudian dicari solusi homogennya menggunakan akar-akar karakteristiknya, dan mencari solusi partikularnya dengan metode variasi parameter. Solusi umum dari persamaan diferensial linear tersebut adalah jumlah dari solusi homogen dan solusi partikularnya. Persamaan diferensial linear tunggal tersebut berorde- , yang solusi umumnya berbentuk . Selanjutnya dicari solusi umum berebentuk  yang berkaitan dengan , solusi umum berbentuk  yang berkaitan dengan  dan , solusi umum berbentuk  yang berkaitan dengan , , dan , demikian seterusnya sampai mencari solusi umum berbentuk  yang berkaitan dengan , , , , . Kumpulan solusi umum yang berbentuk  merupakan solusi umum dari sistem persamaan diferensial linear non homogen orde satu tersebut.Kata kunci:  Diferensial, Linear, Non-Homogen, Orde, Satu. Technical to Find The System of Linear Non-Homogen Differential Equation of First OrderAbstract. Determination of first-order non-homogeneous linear differential equation system solutions with constant coefficients, carried out by changing the system of equations into a single non-homogeneous linear differential equation. From a single non-homogeneous differential equation, a homogeneous solution is then used using its characteristic roots, and looking for a particular solution with the parameter variation method. The general solution of these linear differential equations is the number of homogeneous solutions and their particular solutions. The single linear differential equation is n-order, the solution being in the form of  . Then look for a general solution in the form of  related to , a general solution in the form of related to  and , general solutions in the form of related to  ,  and , and so on until looking for a general solution in the form of  related to , , ,  ..., . A collection of general solutions in the form of , , , ...,  is the general solution of the first-order non-homogeneous linear differential equation system.Keywords: Linear, Differential, First, Order, Non-Homogeneous


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


2020 ◽  
Vol 69 (1) ◽  
pp. 7-11
Author(s):  
A.K. Abirov ◽  
◽  
N.K. Shazhdekeeva ◽  
T.N. Akhmurzina ◽  
◽  
...  

The article considers the problem of solving an inhomogeneous first-order differential equation with a variable with a constant coefficient in a hypercomplex system. The structure of the solution in different cases of the right-hand side of the differential equation is determined. The structure of solving the equation in the case of the appearance of zero divisors is shown. It turns out that when the component of a hypercomplex function is a polynomial of an independent variable, the differential equation turns into an inhomogeneous system of real variables from n equations and its solution is determined by certain methods of the theory of differential equations. Thus, obtaining analytically homogeneous solutions of inhomogeneous differential equations in a hypercomplex system leads to an increase in the efficiency of modeling processes in various fields of science and technology.


1942 ◽  
Vol 46 (378) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Turton

In 1917–19, Barling and Webb, Berry, Cowley and Levy, and Webb and Lang discussed the elastic stability of struts of various tapers, but it appears to have escaped notice that one of the few cases in which formal integration is possible is that in which the tapered profile of axial longitudinal sections is part of a parabola; this gives a “ homogeneous linear “ differential equation, i.e., a linear equation of the form f (xd/dx) y = F (x).


2019 ◽  
Vol 103 (557) ◽  
pp. 257-264
Author(s):  
Bethany Fralick ◽  
Reginald Koo

We consider the second order homogeneous linear differential equation (H) $${ ay'' + by' + cy = 0 }$$ with real coefficients a, b, c, and a ≠ 0. The function y = emx is a solution if, and only if, m satisfies the auxiliary equation am2 + bm + c = 0. When the roots of this are the complex conjugates m = p ± iq, then y = e(p ± iq)x are complex solutions of (H). Nevertheless, real solutions are given by y = c1epx cos qx + c2epx sin qx.


Sign in / Sign up

Export Citation Format

Share Document