scholarly journals On the analytic structure of certain infinite dimensional Teicmüller spaces

1996 ◽  
Vol 141 ◽  
pp. 143-156 ◽  
Author(s):  
Takeo Ohsawa

It is well known since long time that quasiconformally different finite Riemann surfaces give rise to biholomorphically nonequivalent Teichmüller spaces except for a few obvious cases (cf. [R], [E-K]). This is deduced as an application of Royden’s theorem asserting that the Teichmüller metric is equal to the Kobayashi metric. For the case of infinite Riemann surfaces, however, it is still unknown whether or not the corresponding result holds, although it has been shown by F. Gardiner [G] that Royden’s theorem is also valid for the infinite dimensional Teichmüller spaces. On the other hand, recent activity of several mathematicians shows that the infinite dimensional Teichmüller spaces are interesting objects of complex analytic geometry (cf. [Kru], [T], [N], [E-K-K]). Therefore, based on the generalized form of Royden’s theorem, one might well look for further insight into Teichmüller spaces by studying the above mentioned nonequivalence question.

1992 ◽  
Vol 127 ◽  
pp. 117-128 ◽  
Author(s):  
Harumi Tanigawa

The theory of quasiconformal mappings plays an important role in Teichmüller theory. The Teichmüller spaces of Riemann surfaces are defined as quotient spaces of the spaces of Beltrami differentials, and the Teichmüller distances are defined to measure quasiconformal deformations between the Riemann surfaces representing points in the Teichmüller spaces. The Teichmüller spaces are complex Banach manifolds equipped with natural complex structures such that the canonical projections are holomorphic. It is known (see Gardinar [4]) that the Teichmüller distance, defined independently of the complex structures, coincides with the Kobayashi distance.In spite of the naturality of the definition of a Teichmüller space as a quotient of Beltrami differentials, for given two Beltrami differentials it is hard to determine whether they are equivalent or not. For this reason, it is not trivial to describe geodesic lines with respect to the Teichmüller-Kobayashi metric.


1997 ◽  
Vol 39 (1) ◽  
pp. 65-76
Author(s):  
Pablo Arés Gastesi

The deformation theory of nonorientable surfaces deals with the problem of studying parameter spaces for the different dianalytic structures that a surface can have. It is an extension of the classical theory of Teichmüller spaces of Riemann surfaces, and as such, it is quite rich. In this paper we study some basic properties of the Teichmüller spaces of non-orientable surfaces, whose parallels in the orientable situation are well known. More precisely, we prove an uniformization theorem, similar to the case of Riemann surfaces, which shows that a non-orientable compact surface can be represented as the quotient of a simply connected domain of the Riemann sphere, by a discrete group of Möbius and anti-Möbius transformation (mappings whose conjugates are Mobius transformations). This uniformization result allows us to give explicit examples of Teichmüller spaces of non-orientable surfaces, as subsets of deformation spaces of orientable surfaces. We also prove two isomorphism theorems: in the first place, we show that the Teichmüller spaces of surfaces of different topological type are not, in general, equivalent. We then show that, if the topological type is preserved, but the signature changes, then the deformations spaces are isomorphic. These are generalizations of the Patterson and Bers-Greenberg theorems for Teichmüller spaces of Riemann surfaces, respectively.


Sign in / Sign up

Export Citation Format

Share Document