scholarly journals Maximum Principles in the Potential Theory

1963 ◽  
Vol 23 ◽  
pp. 165-187 ◽  
Author(s):  
Masanori Kishi

Ninomiya, in his thesis [13] on the potential theory with respect to a positive symmetric continuous kernel G on a locally compact Hausdorff space Ω, proves that G satisfies the balayage (resp. equilibrium) principle if and only if G satisfies the domination (resp. maximum) principle. He starts from the Gauss-Ninomiya variation and shows that for any given compact set K in Ω and any positive upper semi-continuous function u on K, there exists a positive measure μ on K such that its potential Gμ is ≥ u on the support of μ and Gμ≥u on K almost everywhere with respect to any positive measure with finite energy.

1974 ◽  
Vol 53 ◽  
pp. 127-135 ◽  
Author(s):  
Isao Higuchi ◽  
Masayuki Itô

In the potential theory with respect to a non-symmetric function-kernel, the following theorem is obtained by M. Kishi ([3]).Let X be a locally compact Hausdorff space and G be a lower semi-continuous function-kernel on X. Assume that G(x, x)>0 for any x in X and that G and the adjoint kernel Ğ of G satisfy “the continuity principle”.


1967 ◽  
Vol 30 ◽  
pp. 9-28 ◽  
Author(s):  
Masayuki Itô

Deny introduced in [4] the notion of functional spaces by generalizing Dirichlet spaces. In this paper, we shall give the following necessary and sufficient conditions for a functional space to be a real Dirichlet space.Let be a regular functional space with respect to a locally compact Hausdorff space X and a positive measure ξ in X. The following four conditions are equivalent.


1966 ◽  
Vol 27 (1) ◽  
pp. 133-137 ◽  
Author(s):  
Masanori Kishi

1. Concerning a positive lower semicontinuous kernel G on a locally compact Hausdorff space X the following existence theorem was obtained in [3].


1992 ◽  
Vol 44 (6) ◽  
pp. 1303-1316 ◽  
Author(s):  
Washek F. Pfeffer ◽  
Brian S. Thomson

AbstractUsing ideas of McShane ([4, Example 3]), a detailed development of the Riemann integral in a locally compact Hausdorff space X was presented in [1]. There the Riemann integral is derived from a finitely additive volume v defined on a suitable semiring of subsets of X. Vis-à-vis the Riesz representation theorem ([8, Theorem 2.141), the integral generates a Riesz measure v in X, whose relationship to the volume v was carefully investigated in [1, Section 7].In the present paper, we use the same setting as in [1] but produce the measure directly without introducing the Riemann integral. Specifically, we define an outer measure by means of gages and introduce a very intuitive concept of gage measurability that is different from the usual Carathéodory définition. We prove that if the outer measure is σ-finite, the resulting measure space is identical to that defined by means of the Carathéodory technique, and consequently to that of [1, Section 7]. If the outer measure is not σ-finite, we investigate the gage measurability of Carathéodory measurable sets that are σ-finite. Somewhat surprisingly, it turns out that this depends on the axioms of set theory.


1990 ◽  
Vol 33 (1) ◽  
pp. 159-164
Author(s):  
K. D. Magill

The countability index, C(S), of a semigroup S is the smallest integer n, if it exists, such that every countable subset of S is contained in a subsemigroup with n generators. If no such integer exists, define C(S) = ∞. The density index, D(S), of a topological semigroup S is the smallest integer n, if it exists, such that S contains a dense subsemigroup with n generators. If no such integer exists, define D(S) = ∞. S(X) is the topological semigroup of all continuous selfmaps of the locally compact Hausdorff space X where S(X) is given the compact-open topology. Various results are obtained about C(S(X)) and D(S(X)). For example, if X consists of a finite number (< 1) of components, each of which is a compact N-dimensional subspace of Euclidean Nspace and has the internal extension property and X is not the two point discrete space. Then C(S(X)) exceeds two but is finite. There are additional results for C(S(X)) and similar results for D(S(X)).


1994 ◽  
Vol 50 (3) ◽  
pp. 445-449 ◽  
Author(s):  
T.K. Das

By constructing the projective lift of a dp-epimorphism, we find a covariant functor E from the category Cd of regular Hausdorff spaces and continuous dp-epimorphisms to its coreflective subcategory εd consisting of projective objects of Cd We use E to show that E(X/G) is homeomorphic to EX/G whenever G is a properly discontinuous group of homeomorphisms of a locally compact Hausdorff space X and X/G is an object of Cd.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Liaqat Ali Khan ◽  
Saud M. Alsulami

In 1961, Wang showed that ifAis the commutativeC*-algebraC0(X)withXa locally compact Hausdorff space, thenM(C0(X))≅Cb(X). Later, this type of characterization of multipliers of spaces of continuous scalar-valued functions has also been generalized to algebras and modules of continuous vector-valued functions by several authors. In this paper, we obtain further extension of these results by showing thatHomC0(X,A)(C0(X,E),C0(X,F))≃Cs,b(X,HomA(E,F)),whereEandFarep-normed spaces which are also essential isometric leftA-modules withAbeing a certain commutativeF-algebra, not necessarily locally convex. Our results unify and extend several known results in the literature.


Author(s):  
S. I. Ahmed ◽  
W. F. Pfeffer

AbstractWe present a systematic and self-contained exposition of the generalized Riemann integral in a locally compact Hausdorff space, and we show that it is equivalent to the Perron and variational integrals. We also give a necessary and sufficient condition for its equivalence to the Lebesgue integral with respect to a suitably chosen measure.


Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5481-5500
Author(s):  
G. Dimov ◽  
E. Ivanova-Dimova ◽  
I. Düntsch

As proved in [16], there exists a duality ?t between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then w(X) = wa(?t(X)), and if, in addition, X is normal, then dim(X) = dima(?t(X)).


Sign in / Sign up

Export Citation Format

Share Document