Bias in the published fossil record

Paleobiology ◽  
1978 ◽  
Vol 4 (3) ◽  
pp. 367-372 ◽  
Author(s):  
Carl F. Koch

The published fossil record has significant bias in favor of common and biostratigraphically important taxa when compared with data obtained from a thorough examination of several hundred collections from the Western Interior of North America. Overall species diversity is underestimated by a factor of 3 to 4, and bivalve and gastropod diversity by a factor of 5. The proportion of bivalves increased from 40 to 56% of the fauna, and the proportion of ammonites decreased from 28 to 18%. Thirteen published reports listed 65 species from 203 reported occurrences. Data from all sources showed 170 species for 1050 occurrences. By using abundance data and assuming a log-normal distribution, as many as 200 fossilizable mollusc species may have inhabited the Western Interior during the uppermost biozone of the Cenomanian. The importance of this study is that it quantifies the bias in the published fossil record relative to the potential fossil record for an unusually well studied interval of geologic time. The bias would be greater for less well studied strata.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 64
Author(s):  
Arnaud Millet

The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.


2020 ◽  
pp. 150-188
Author(s):  
Richard Holland ◽  
Richard St. John

Sign in / Sign up

Export Citation Format

Share Document