atomic force
Recently Published Documents





2022 ◽  
Vol 23 (2) ◽  
pp. 889
Atsuya Matsui ◽  
Jean-Pierre Bellier ◽  
Takeshi Kanai ◽  
Hiroki Satooka ◽  
Akio Nakanishi ◽  

The most common type of dementia, Alzheimer’s disease, is associated with senile plaques formed by the filamentous aggregation of hydrophobic amyloid-β (Aβ) in the brains of patients. Small oligomeric assemblies also occur and drugs and chemical compounds that can interact with such assemblies have attracted much attention. However, these compounds need to be solubilized in appropriate solvents, such as ethanol, which may also destabilize their protein structures. As the impact of ethanol on oligomeric Aβ assembly is unknown, we investigated the effect of various concentrations of ethanol (0 to 7.2 M) on Aβ pentameric assemblies (Aβp) by combining blue native-PAGE (BN-PAGE) and ambient air atomic force microscopy (AFM). This approach was proven to be very convenient and reliable for the quantitative analysis of Aβ assembly. The Gaussian analysis of the height histogram obtained from the AFM images was correlated with band intensity on BN-PAGE for the quantitative estimation of Aβp. Our observations indicated up to 1.4 M (8.3%) of added ethanol can be used as a solvent/vehicle without quantitatively affecting Aβ pentamer stability. Higher concentration induced significant destabilization of Aβp and eventually resulted in the complete disassembly of Aβp.

Sara Al-Waisawy ◽  
Ahmed Kareem Abdullah ◽  
Hadi A. Hamed ◽  
Ali A. Al-bakri

In this research, the pure titanium foil was treated in glycerol base electrolyte with 0.7 wt.% NH4F and a small amount of H2O at 17 V for 2 hours by electrochemical anodization process in order to prepare Titania nanotube arrays at room temperature (~25 ºC), different water content was added to the electrolyte as a tube enhancing agent. The high density uniform arrays are prepared by using organized and well aligned these tubes. The average size of tube diameter, ranging from 57 to 92 nm which found it increases with increasing water content, and the length of the tube ranging from 2.76 to 4.12 µm, also found to increase with increasing water content and ranging in size of wall thickness from 23 to 35 nm. A possible growth mechanism is presented. The X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to study the structure and morphology of the Titania films.

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Wenjuan Li ◽  
He Shang ◽  
He Zhou ◽  
Yongsheng Song ◽  
Shuilin Zheng ◽  

The present work investigated the comparison of the effects of Na2SO3 and Na2SiO3 on thiourea stabilization, and a systematic study was undertaken to establish the effects of these stabilizers on the stability of alkaline thiourea, both qualitatively and quantitatively. The effects of these stabilizers on the activation energy of alkaline thiourea gold leaching was also studied. The results showed that sodium silicate was more suitable as a stabilizer in this system than sodium sulfite because the peak current of gold dissolution with sodium sulfite was higher than that with sodium silicate, but the inhibition of thiourea decomposition by the former was less obvious than that of sodium silicate in the cyclic voltammetry curve. The quartz crystal microbalance results showed that the quality decreased to about 100 ng cm2 in the presence of a stabilizer, while it increased to 300 ng cm2 in the absence of the stabilizer. It is inferred that gold can be dissolved by alkaline thiourea in the presence of a stabilizer, while it cannot without a stabilizer because of the decomposition of thiourea. This assumption was confirmed by atomic force microscopy measurements. The surface activation energy of Au dissolution decreased from 183.76 to 98.07 kJ/moL with the addition of sodium silicate, indicating that Au dissolution was promoted with the chemical.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 593
Ekaterina Babich ◽  
Sergey Scherbak ◽  
Ekaterina Lubyankina ◽  
Valentina Zhurikhina ◽  
Andrey Lipovskii

The problem of optimizing the topography of metal structures allowing Surface Enhanced Raman Scattering (SERS) sensing is considered. We developed a model, which randomly distributes hemispheroidal particles over a given area of the glass substrate and estimates SERS capabilities of the obtained structures. We applied Power Spectral Density (PSD) analysis to modeled structures and to atomic force microscope images widely used in SERS metal island films and metal dendrites. The comparison of measured and calculated SERS signals from differing characteristics structures with the results of PSD analysis of these structures has shown that this approach allows simple identification and choosing a structure topography, which is capable of providing the maximal enhancement of Raman signal within a given set of structures of the same type placed on the substrate.

2022 ◽  
Vol 19 ◽  
Diaa Al-Domi ◽  
Ayat Bozeya ◽  
Mohamed Al-Fandi

Aim: To develop a new nano-delivery system for insulin buccal administration. Background: Biodegradable polymeric nanoparticles (PNPs) had viewed countless breakthroughs in drug delivery systems. The main objective of PNPs application in delivering and carrying different promising drugs is to make sure that the drugs being delivered to their action sites. As a result maximizing the desired effect and overcoming their limitations and drawbacks. Objectives: The main goals of this study were to produce an insulin consumable nano-delivery system for buccal administration and enhance the mucoadhesive effect in sustaining insulin release. Methods: Water in oil in water (W-O-W) microemulsion solvent evaporation technique was used for the preparation of nanoparticles consisting from positively charged poly (D, L-lactide-co-glycolide) coated with chitosan and loaded with insulin. Later, a consumable buccal film was prepared by the spin coating method and loaded with the previously prepared nanoparticles. Results: The newly prepared nanoparticle was assessed in terms of size, charge and surface morphology using a Scanning Electron Microscope (SEM), zeta potential, Atomic Force Microscope (AFM), and Fourier Transform Infra-red (FTIR) spectroscopy. An in-vitro investigation of the insulin release, from nanoparticles and buccal film, demonstrated controlled as well as sustained delivery over 6 hrs. The cumulative insulin release decreased to about (28.9%) with buccal film in comparing with the nanoparticle (50 %). Conclusion: The buccal film added another barrier for insulin release. Therefore, the release was sustained.

Sign in / Sign up

Export Citation Format

Share Document