elastic modulus
Recently Published Documents





2022 ◽  
Vol 171 ◽  
pp. 108816
Zhonggang Wang ◽  
Junjie Deng ◽  
Kai Liu ◽  
Yong Tao

2022 ◽  
Vol 14 (2) ◽  
pp. 863
Chenchen Li ◽  
Shifu Liu ◽  
Hongduo Zhao ◽  
Yu Tian

To advance the development of piezoelectric energy harvesters, this study designed and manufactured bridge-unit-based and pile-unit-based piezoelectric devices. An indoor material testing system and accelerated pavement test equipment were used to test the electrical performance, mechanical performance, and electromechanical coupling performance of the devices. The results showed that the elastic modulus of the pile structure device was relatively higher than that of the bridge structure device. However, the elastic modulus of the two devices should be improved to avoid attenuation in the service performance and fatigue life caused by the stiffness difference. Furthermore, the electromechanical conversion coefficients of the two devices were smaller than 10% and insensitive to the load magnitude and load frequency. Moreover, the two devices can harvest 3.4 mW and 2.6 mW under the wheel load simulated by the one-third scale model mobile load simulator, thus meeting the supply requirements of low-power sensors. The elastic modulus, electromechanical conversion coefficients, and electric performance of the pile structure device were more reliable than those of the bridge structure device, indicating a better application prospect in road engineering.

Ryan J. Pewowaruk ◽  
Claudia Korcarz ◽  
Yacob Tedla ◽  
Gregory Burke ◽  
Philip Greenland ◽  

Background: Elastic arteries stiffen via 2 main mechanisms: (1) load-dependent stiffening from higher blood pressure and (2) structural stiffening due to changes in the vessel wall. It is unknown how these different mechanisms contribute to incident cardiovascular disease (CVD) events. Methods: The MESA (Multi-Ethnic Study of Atherosclerosis) is a longitudinal study of 6814 men and women without CVD at enrollment, from 6 communities in the United States. MESA participants with B-mode carotid ultrasound and brachial blood pressure at baseline Exam in (2000–2002) and CVD surveillance (mean follow-up 14.3 years through 2018) were included (n=5873). Peterson’s elastic modulus was calculated to represent total arterial stiffness. Structural stiffness was calculated by adjusting Peterson’s elastic modulus to a standard blood pressure of 120/80 mm Hg with participant-specific models. Load-dependent stiffness was the difference between total and structural stiffness. Results: In Cox models adjusted for traditional risk factors, load-dependent stiffness was significantly associated with higher incidence of CVD events (hazard ratio/100 mm Hg, 1.21 [95% CI, 1.09–1.34] P <0.001) events while higher structural stiffness was not (hazard ratio, 1.03 [95% CI, 0.99–1.07] P =0.10). Analysis of participants who were normotensive (blood pressure <130/80, no antihypertensives) at baseline exam (n=2122) found higher load-dependent stiffness was also associated with significantly higher incidence of hypertension (hazard ratio, 1.53 [95% CI, 1.35–1.75] P <0.001) while higher structural stiffness was not (hazard ratio, 1.03 [95% CI, 0.99–1.07] P =0.16). Conclusions: These results provide valuable new insights into mechanisms underlying the association between arterial stiffness and CVD. Load-dependent stiffness was significantly associated with CVD events but structural stiffness was not.

2022 ◽  
Vol 12 (1) ◽  
Estefano Muñoz-Moya ◽  
Claudio M. García-Herrera ◽  
Nelson A. Lagos ◽  
Aldo F. Abarca-Ortega ◽  
Antonio G. Checa ◽  

AbstractMollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., $$pCO_2$$ p C O 2 -induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material’s stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.

2022 ◽  
Jianzhong Ju ◽  
Zhili Long ◽  
Shuyuan Ye ◽  
Yongzhi Liu ◽  
Heng Zhao

Abstract Ultrasonic vibration used in friction stir welding (FSW) has shown advantages in reducing welding defects and improving welding quality. How to design an ultrasonic tool holder is a challenge because the holder is rotating in a confined space. In this study, we design a 20 kHz integrated ultrasonic tool holder in FSW. This novel configuration can be applied in general machining equipment. The elastic modulus is measured by non-destructive acoustic testing to attain the precise frequency. Three FSW transducers with alloy steel are designed by the modal analysis and the transducer prototypes are fabricated. The effect of pre-tightening force on transducer frequency is investigated, where the prestress of the piezoelectric stack instead of the torque is tested to achieve an optimal working frequency. The vibration of the transducers is measured by a Doppler Vibrometer System. It proved that the resonant frequencies are well consistent between simulation model and the experiment by the elastic modulus testing and the pre-tightening optimization. Moreover, the experiment demonstrates that the vibration amplitude is significantly different, even in a slight difference of steel material properties are adopted. The dynamic performance of the designed transducers is acceptable by the vibration measurement.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 577
Stefan Karlsson

TiO2 is an important oxide for property modifications in the conventional soda lime silicate glass family. It offers interesting optical and mechanical properties, for instance, by substituting heavy metals such as lead in consumer glasses. The compositional effects on the hardness, reduced elastic modulus and crack resistance as determined by indentation of chemically strengthened (CS) TiO2-doped soda lime silicate glass was studied in the current paper. The CS, which was performed by a K+ for Na+ ion exchange in a molten KNO3 salt bath at 450 °C for 15 h, yielded significant changes in the indentation mechanical properties. The hardness of the glass samples increased, and this was notably dependent on the SiO2, CaO and TiO2 content. The reduced elastic modulus was less affected by the CS but showed decrease for most samples. The crack resistance, an important property in many applications where glasses are subjected to contact damage, showed very different behaviors among the series. Only one of the series did significantly improve the crack resistance where low CaO content, high TiO2 content, high molar volume and increased elastic deformation favored an increased crack resistance.

Ying Chen ◽  
Weiling Luan ◽  
Xuanchen Zhu ◽  
Haofeng Chen

Abstract LiNixMnyCozO2 (NMC) is among the most promising cathode materials for commercial Li-ion batteries due to its high electrochemical performance. However, NMC composite cathode is still plagued with limited cyclic performance, which is influenced by its structural stability during the cycling process. The cathode, which comprises of the active material, polymeric binder, and porous conductive matrix, often exhibits large structural variation during the electrochemical cycling process. This inevitably increases the challenge of measuring the mechanical properties of the material. Even though single crystal NMC possesses better stability as compared to the polycrystalline NMC, the electrochemical performance degradation of single crystal NMC cathode remains relatively unexplored. Different sample preparation methods are compared systematically in accordance to the previous report, and a new method of sample preparation is proposed. Nanoindentation instrument is used to measure the elastic modulus and hardness of the single crystal NMC particles. The measured elastic modulus and hardness of NMC particles, under different electrochemical environments, are dependent on a large number of nanoindentation experiments and statistical analysis of the result obtained from the carefully prepared samples. The sample preparation method is the key factor that can significantly influence the nanoindentation experiment results of the NMC particles. This work shows that the mechanical properties of the single crystal NMC particles degrade significantly with number of electrochemical cycles. The decreasing elastic modulus with the number of electrochemical cycles can be fitted using a two-parameter logarithm model.

Sign in / Sign up

Export Citation Format

Share Document