scholarly journals Lyapunov maps, simplicial complexes and the Stone functor

1992 ◽  
Vol 12 (1) ◽  
pp. 153-183 ◽  
Author(s):  
Joel W. Robbin ◽  
Dietmar A. Salamon

AbstractLet be an attractor network for a dynamical system ft: M → M, indexed by the lower sets of a partially ordered set P. Our main theorem asserts the existence of a Lyapunov map ψ:M → K(P) which defines the attractor network. This result is used to prove the existence of connection matrices for discrete-time dynamical systems.

2005 ◽  
Vol 15 (01) ◽  
pp. 109-117 ◽  
Author(s):  
DEJIAN LAI ◽  
GUANRONG CHEN

In this article, we propose and study an extension of the Chen–Lai algorithm for chaotification of discrete-time dynamical systems. The proposed method is a simple but mathematically rigorous feedback control design method that can gradually make all the Lyapunov exponents of the controlled system strictly positive for any given n-dimensional dynamical system that has a uniformly bounded Jacobian but otherwise could be originally nonchaotic or even asymptotically stable.


1981 ◽  
Vol 4 (3) ◽  
pp. 551-603
Author(s):  
Zbigniew Raś

This paper is the first of the three parts of work on the information retrieval systems proposed by Salton (see [24]). The system is defined by the notions of a partially ordered set of requests (A, ⩽), the set of objects X and a monotonic retrieval function U : A → 2X. Different conditions imposed on the set A and a function U make it possible to obtain various classes of information retrieval systems. We will investigate systems in which (A, ⩽) is a partially ordered set, a lattice, a pseudo-Boolean algebra and Boolean algebra. In my paper these systems are called partially ordered information retrieval systems (po-systems) lattice information retrieval systems (l-systems); pseudo-Boolean information retrieval systems (pB-systems) and Boolean information retrieval systems (B-systems). The first part concerns po-systems and 1-systems. The second part deals with pB-systems and B-systems. In the third part, systems with a partial access are investigated. The present part discusses the method for construction of a set of attributes. Problems connected with the selectivity and minimalization of a set of attributes are investigated. The characterization and the properties of a set of attributes are given.


1974 ◽  
Vol 17 (4) ◽  
pp. 406-413 ◽  
Author(s):  
Jürgen Schmidt

The main result of this paper is the theorem in the title. Only special cases of it seem to be known so far. As an application, we obtain a result on the unique extension of Galois connexions. As a matter of fact, it is only by the use of Galois connexions that we obtain the main result, in its present generality.


1972 ◽  
Vol 13 (4) ◽  
pp. 451-455 ◽  
Author(s):  
Stephen T. L. Choy

For a semigroup S let I(S) be the set of idempotents in S. A natural partial order of I(S) is defined by e ≦ f if ef = fe = e. An element e in I(S) is called a primitive idempotent if e is a minimal non-zero element of the partially ordered set (I(S), ≦). It is easy to see that an idempotent e in S is primitive if and only if, for any idempotent f in S, f = ef = fe implies f = e or f is the zero element of S. One may also easily verify that an idempotent e is primitive if and only if the only idempotents in eSe are e and the zero element. We let П(S) denote the set of primitive idempotent in S.


1994 ◽  
Vol 03 (02) ◽  
pp. 223-231
Author(s):  
TOMOYUKI YASUDA

A ribbon n-knot Kn is constructed by attaching m bands to m + 1n-spheres in the Euclidean (n + 2)-space. There are many way of attaching them; as a result, Kn has many presentations which are called ribbon presentations. In this note, we will induce a notion to classify ribbon presentations for ribbon n-knots of m-fusions (m ≥ 1, n ≥ 2), and show that such classes form a totally ordered set in the case of m = 2 and a partially ordered set in the case of m ≥ 1.


2018 ◽  
Vol 21 (4) ◽  
pp. 593-628 ◽  
Author(s):  
Cihan Okay

AbstractIn this paper, we study the homotopy type of the partially ordered set of left cosets of abelian subgroups in an extraspecial p-group. We prove that the universal cover of its nerve is homotopy equivalent to a wedge of r-spheres where {2r\geq 4} is the rank of its Frattini quotient. This determines the homotopy type of the universal cover of the classifying space of transitionally commutative bundles as introduced in [2].


Sign in / Sign up

Export Citation Format

Share Document