Piecewise monotone maps without periodic points: rigidity, measures and complexity

2004 ◽  
Vol 24 (2) ◽  
pp. 383-405 ◽  
Author(s):  
JRME BUZZI ◽  
PASCAL HUBERT
1986 ◽  
Vol 6 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Louis Block ◽  
Ethan M. Coven

AbstractLet f denote a continuous map of a compact interval to itself, P(f) the set of periodic points of f and Λ(f) the set of ω-limit points of f. Sarkovskǐi has shown that Λ(f) is closed, and hence ⊆Λ(f), and Nitecki has shown that if f is piecewise monotone, then Λ(f)=. We prove that if x∈Λ(f)−, then the set of ω-limit points of x is an infinite minimal set. This result provides the inspiration for the construction of a map f for which Λ(f)≠.


2012 ◽  
Vol 22 (08) ◽  
pp. 1250195 ◽  
Author(s):  
STEVEN M. PEDERSON

This paper studies the set limit of a sequence of invariant sets corresponding to a convergent sequence of piecewise monotone interval maps. To do this, the notion of essential entropy-carrying set is introduced. A piecewise monotone map f with an essential entropy-carrying horseshoe S(f) and a sequence of piecewise monotone maps [Formula: see text] converging to f is considered. It is proven that if each gi has an invariant set T(gi) with at least as much topological entropy as f, then the set limit of [Formula: see text] contains S(f).


2005 ◽  
Vol 13 (2) ◽  
pp. 451-468 ◽  
Author(s):  
Michał Misiurewicz ◽  
◽  
Peter Raith ◽  

1999 ◽  
Vol 09 (09) ◽  
pp. 1731-1742 ◽  
Author(s):  
F. BALIBREA ◽  
V. JIMÉNEZ LÓPEZ ◽  
J. S. CÁNOVAS PEÑA

In this paper we study some formulas involving metric and topological entropy and sequence entropy. We summarize some classical formulas satisfied by metric and topological entropy and ask the question whether the same or similar results hold for sequence entropy. In general the answer is negative; still some questions involving these formulas remain open. We make a special emphasis on the commutativity formula for topological entropy h(f ◦ g)=h(g ◦ f) recently proved by Kolyada and Snoha. We give a new elementary proof and use similar ideas to prove commutativity formulas for metric entropy and other topological invariants. Finally we prove a Misiurewicz–Szlenk type inequality for topological sequence entropy for piecewise monotone maps on the interval I=[0, 1]. For this purpose we introduce the notion of upper entropy.


Sign in / Sign up

Export Citation Format

Share Document