topological conjugacy
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 32)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 29 (6) ◽  
pp. 835-850
Author(s):  
Vladislav Kruglov ◽  
◽  
Olga Pochinka ◽  
◽  

Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another.


2021 ◽  
Vol 29 (6) ◽  
pp. 851-862
Author(s):  
Iuliana Golikova ◽  
◽  
Svetlana Zinina ◽  
◽  

It is known from the 1939 work of A. G. Mayer that rough transformations of the circle are limited to the diffeomorphisms of Morse – Smale. A topological conjugacy class of orientation-preserving diffeomorphism is entirely determined by its rotation number and the number of its periodic orbits, while for orientation-changing diffeomorphism the topological invariant will be only the number of periodic orbits. Thus, the purpose of this study is to find topological invariants of n-fold Cartesian products of diffeomorphisms of a circle. Methods. This paper explores the rough Morse – Smale diffeomorphisms on the n-torus surface. To prove the main result, additional constructions and formation of subsets of considered sets were used. Results. In this paper, a numerical topological invariant is introduced for n-fold Cartesian products of rough circle transformations. Conclusion.The criterion of topological conjugacy of n-fold Cartesian products of rough transformations of a circle is formulated.


2021 ◽  
pp. 53-60
Author(s):  
Robert L. Devaney

Author(s):  
Sergey V. Sidorov ◽  
Ekaterina E. Chilina

Abstract. This paper contains a complete classification of algebraic non-hyperbolic automorphisms of a two-dimensional torus, announced by S. Batterson in 1979. Such automorphisms include all periodic automorphisms. Their classification is directly related to the topological classification of gradient-like diffeomorphisms of surfaces, since according to the results of V. Z. Grines and A.N. Bezdenezhykh, any gradient like orientation-preserving diffeomorphism of an orientable surface is represented as a superposition of the time-1 map of a gradient-like flow and some periodic homeomorphism. J. Nielsen found necessary and sufficient conditions for the topological conjugacy of orientation-preserving periodic homeomorphisms of orientable surfaces by means of orientation-preserving homeomorphisms. The results of this work allow us to completely solve the problem of realization all classes of topological conjugacy of periodic maps that are not homotopic to the identity in the case of a torus. Particularly, it follows from the present paper and the work of that if the surface is a two-dimensional torus, then there are exactly seven such classes, each of which is represented by algebraic automorphism of a two-dimensional torus induced by some periodic matrix.


2021 ◽  
pp. 1-42
Author(s):  
TREVOR CLARK ◽  
MÁRCIO GOUVEIA

Abstract A gap mapping is a discontinuous interval mapping with two strictly increasing branches that have a gap between their ranges. They are one-dimensional dynamical systems, which arise in the study of certain higher dimensional flows, for example the Lorenz flow and the Cherry flow. In this paper, we prove hyperbolicity of renormalization acting on $C^3$ dissipative gap mappings, and show that the topological conjugacy classes of infinitely renormalizable gap mappings are $C^1$ manifolds.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
P. M. Akhmet’ev ◽  
T. V. Medvedev ◽  
O. V. Pochinka

Author(s):  
Denis A. Baranov ◽  
Olga V. Pochinka

Abstract. In this paper, we find all admissible topological conjugacy classes of periodic transformations of a two-dimensional surface of genus two. It is proved that there are exactly seventeen pairwise topologically non-conjugate orientation-preserving periodic pretzel transformations. The implementation of all classes by lifting the full characteristics of mappings from a modular surface to a surface of genus two is also presented. The classification results are based on Nielsen’s theory of periodic surface transformations, according to which the topological conjugacy class of any such homeomorphism is completely determined by its characteristic. The complete characteristic carries information about the genus of the modular surface, the ramified bearing surface, the periods of the ramification points and the turns around them. The necessary and sufficient conditions for the admissibility of the complete characteristic are described by Nielsen and for any surface they give a finite number of admissible collections. For surfaces of a small genus, one can compile a complete list of admissible characteristics, which was done by the authors of the work for a surface of genus 2.


Author(s):  
KENGO MATSUMOTO

Abstract We characterize topological conjugacy classes of one-sided topological Markov shifts in terms of the associated Cuntz–Krieger algebras and their gauge actions with potentials.


Sign in / Sign up

Export Citation Format

Share Document